> 文档中心 > 【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)


本篇文章来自极术社区与灵动组织的MM32F5270开发板评测活动,更多开发板试用活动请关注极术社区网站。作者:@#@

本篇文章来自极术社区与灵动组织的MM32F5270开发板评测活动,更多开发板试用活动请关注极术社区网站。作者:@#@

最近在做几个嵌入式项目,一直使用的是STM32F429作为主控制芯片。从去年开始,ST的芯片全系涨价,价格高到离谱,并且市场上充斥着翻新芯片,有时候有钱都不一定能买到靠谱的原装芯片。考虑到项目最终落地需要考虑到芯片供应问题,所以一直在寻找国产替代。正好看到极术社区的MM32F5270适用活动,初步看芯片性能以及外设接口能满足现在的项目需求,所以申请一个板子来看下从STM32移植到MM32F5270的工作量。

一 项目简介

最近做的项目是一个气体分析仪,基本原理框图如下。

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

用STM32跑PID算法,控制比例阀开度,将输入气流稳定到设置值,然后由气体检测器进行采样并处理。这个项目目前已经开始小批量出货,这里就不过多说明技术细节。

由于项目客制化需求比较多,要求能够通过键盘选择不同功能,涉及到多级菜单。所以大量的工作都在自定义的菜单设计和实现上,这里就先试试移植OLED驱动代码到MM32F5270看看工作量。

二 环境准备

请参考https://aijishu.com/a/1060000…准备开发环境。记住,一定要下载MDK5.37版本才能使用灵动微电子的MM32 pack包。

因为我习惯用JLINK调试器做开发,所以这里我就直接使用JLINK作为调试工具。JLINK的插头直接插上去就可以,有防呆设计,不用担心会插错,下面是JLINK连接特写。

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

插上JLINK后,在魔术棒页面DEBUG tab里选择JLINK/J-TRACE Cortex

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

点击setting,在setting页面选择SW

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

接下来就可以愉快的使用JLINK进行MM32F5270开发板的调试了。

三 代码移植

初步看了下Mind SDK的文件结构,对所有的外设,都有对应的驱动代码,驱动代码对底层的硬件操作做了很好的封装。看了下对应的driver_example以及demo_apps,提供的都是类似于如下的代码文件组织结构

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

对于简单的应用来说,这种结构可以满足需求。但是对于一些外设较多的项目,这种组织形式在逻辑上不是很清晰,且代码复用性不高。所以这里按照项目的需求,设计了按hardware和module分类的方法,项目部分文件结构如下:

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

其中hardware目录是用到的外设driver,module目录里会放跟硬件无关的功能模块,比如流量控制功能,气体采样功能(当然目前为空,但是因为这是硬件无关逻辑,所以基本上可以不做改动直接移到MM32F5270)等。这里以tim_basic例程为基础,来移植OLED驱动。

  1. 拆分clock_init.c/clock_init.h文件,这里将所有外设的clokc外设移除,只留下主时钟的初始化。
    void BOARD_InitBootClocks(void)
    {
    CLOCK_ResetToDefault();
    CLOCK_BootToHSE120MHz();
    }

2.将uart拆分到单独文件,以后在不同项目可以进行复用
demo_uart.h

#ifndef _UART_H_
#define _UART_H_

#include “clock_init.h”

/* DEBUG UART. */
#define BOARD_DEBUG_UART_PORT UART1
#define BOARD_DEBUG_UART_BAUDRATE 9600u
#define BOARD_DEBUG_UART_FREQ CLOCK_APB2_FREQ

void uart1_init(void);
#endif

demo_uart.c
#include “demo_uart.h”
#include

#include “hal_common.h”
#include “hal_gpio.h”
#include “hal_uart.h”
#include “hal_rcc.h”

static void uart1_gpio_init(void)
{
/* PB6 - UART1_TX. */
GPIO_Init_Type gpio_init;
gpio_init.Pins = GPIO_PIN_6;
gpio_init.PinMode = GPIO_PinMode_AF_PushPull;
gpio_init.Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &gpio_init);
GPIO_PinAFConf(GPIOB, gpio_init.Pins, GPIO_AF_7);

/* PB7 - UART1_RX. */
gpio_init.Pins = GPIO_PIN_7;
gpio_init.PinMode = GPIO_PinMode_In_Floating;
gpio_init.Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &gpio_init);
GPIO_PinAFConf(GPIOB, gpio_init.Pins, GPIO_AF_7);

}

static void uart1_port_init(void)
{
UART_Init_Type uart_init;

uart_init.ClockFreqHz = BOARD_DEBUG_UART_FREQ;
uart_init.BaudRate = BOARD_DEBUG_UART_BAUDRATE;
uart_init.WordLength = UART_WordLength_8b;
uart_init.StopBits = UART_StopBits_1;
uart_init.Parity = UART_Parity_None;
uart_init.XferMode = UART_XferMode_RxTx;
uart_init.HwFlowControl = UART_HwFlowControl_None;
UART_Init(BOARD_DEBUG_UART_PORT, &uart_init);
UART_Enable(BOARD_DEBUG_UART_PORT, true);

}

void uart1_init(void)
{
/* UART1. */
RCC_EnableAPB2Periphs(RCC_APB2_PERIPH_UART1, true);
RCC_ResetAPB2Periphs(RCC_APB2_PERIPH_UART1);

/* GPIOB. */
RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOB, true);
RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOB);

uart1_gpio_init();

uart1_port_init();
}

#if defined(__ARMCC_VERSION)
int fputc(int c, FILE *f)
{
(void)(f);
while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)©);
return c;
}

int fgetc(FILE *f)
{
(void)(f);
while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
return UART_GetData(BOARD_DEBUG_UART_PORT);
}

#elif defined(__GNUC__)

/*
* Called by libc stdio fwrite functions
*/
int _write(int fd, char *ptr, int len)
{
int i = 0;

/*
* write “len” of char from “ptr” to file id “fd”
* Return number of char written.
*
* Only work for STDOUT, STDIN, and STDERR
*/
if (fd > 2)
{
return -1;
}

while (*ptr && (i < len))
{
while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)(*ptr));
i++;
ptr++;
}

return i;
}

/*
* Called by the libc stdio fread fucntions
*
* Implements a buffered read with line editing.
*/
int _read(int fd, char *ptr, int len)
{
int my_len;

if (fd > 2)
{
return -1;
}

my_len = 0;
while (len > 0)
{
while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
*ptr = UART_GetData(BOARD_DEBUG_UART_PORT);
len–;
my_len++;

if ( (*ptr == ‘\r’) || (*ptr == ‘\n’) || (*ptr == ‘\0’) )
{
break;
}

ptr++;
}

return my_len; /* return the length we got */
}

int putchar(int c)
{
while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)©);
return c;
}

int getchar(void)
{
while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
return UART_GetData(BOARD_DEBUG_UART_PORT);
}

#elif (defined(__ICCARM__))
/* These function __write and __read is used to support IAR toolchain to printf and scanf. */

int fputc(int ch, FILE *f)
{
while ( 0u == (UART_STATUS_TX_EMPTY & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
UART_PutData(BOARD_DEBUG_UART_PORT, (uint8_t)(ch));
return ch;
}

int fgetc(FILE *f)
{
while ( 0u == (UART_STATUS_RX_DONE & UART_GetStatus(BOARD_DEBUG_UART_PORT)) )
{}
return UART_GetData(BOARD_DEBUG_UART_PORT);
}

#endif

  1. OLED会用到SPI,这里用SPI3作为控制接口
    demo_spi.h

    #ifndef _DEMO_SPI_H_
    #define _DEMO_SPI_H_
    #include “hal_common.h”
    #include “clock_init.h”

    #define BOARD_LOOP_SPI_PORT SPI3
    //#define BOARD_LOOP_SPI_BAUDRATE 1000000u /* 400khz. /
    #define BOARD_LOOP_SPI_BAUDRATE 400000u /
    400khz. */

    #define BOARD_LOOP_SPI_FREQ CLOCK_APB1_FREQ

    void spi3_init(void);

    /* SPI tx. */
    void spi3_putbyte(uint8_t c);

    /* SPI rx. */
    uint8_t spi3_getbyte(void);
    #endif

  2. demo_spi.c

    #include “demo_spi.h”
    #include “hal_rcc.h”
    #include “hal_spi.h”
    #include “hal_gpio.h”

    static void spi3_gpio_init(void)
    {
    GPIO_Init_Type gpio_init;

    /* SPI3_NSS - PA15. /
    /

    gpio_init.Pins = GPIO_PIN_15;
    gpio_init.PinMode = GPIO_PinMode_AF_PushPull;
    gpio_init.Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &gpio_init);
    GPIO_PinAFConf(GPIOA, GPIO_PIN_15, GPIO_AF_6);
    */

    /* SPI3_MOSI - PC12. */
    gpio_init.Pins = GPIO_PIN_12;
    gpio_init.PinMode = GPIO_PinMode_AF_PushPull;
    gpio_init.Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOC, &gpio_init);
    GPIO_PinAFConf(GPIOC, GPIO_PIN_12, GPIO_AF_6);

    /* SPI3_MISO - PC11. */
    gpio_init.Pins = GPIO_PIN_11;
    gpio_init.PinMode = GPIO_PinMode_In_Floating;
    gpio_init.Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOC, &gpio_init);
    GPIO_PinAFConf(GPIOC, GPIO_PIN_11, GPIO_AF_6);

    /* SPI3_SCK - PC10. */
    gpio_init.Pins = GPIO_PIN_10;
    gpio_init.PinMode = GPIO_PinMode_AF_PushPull;
    gpio_init.Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOC, &gpio_init);
    GPIO_PinAFConf(GPIOC, GPIO_PIN_10, GPIO_AF_6);

    }

    static void spi3_port_init(void)
    {
    /* Setup SPI module. */
    SPI_Master_Init_Type spi_init;
    spi_init.ClockFreqHz = BOARD_LOOP_SPI_FREQ;
    spi_init.BaudRate = BOARD_LOOP_SPI_BAUDRATE;
    spi_init.XferMode = SPI_XferMode_TxRx;
    spi_init.PolarityPhase = SPI_PolarityPhase_Alt0;
    spi_init.DataWidth = SPI_DataWidth_8b;
    spi_init.LSB = false;
    spi_init.CSMode = SPI_CSMode_NonAuto;
    SPI_InitMaster(BOARD_LOOP_SPI_PORT, &spi_init);

    /* Enable SPI. */
    SPI_Enable(BOARD_LOOP_SPI_PORT, true);

    }

    void spi3_init(void)
    {
    /* GPIOA. /
    /

    RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOA, true);
    RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOA);
    */

    /* GPIOC. */
    RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOC, true);
    RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOC);

    /* SPI3. */
    RCC_EnableAPB1Periphs(RCC_APB1_PERIPH_SPI3, true);
    RCC_ResetAPB1Periphs(RCC_APB1_PERIPH_SPI3);

    spi3_gpio_init();
    spi3_port_init();
    }

    /* SPI tx. */
    void spi3_putbyte(uint8_t c)
    {
    /* Polling for tx empty. */
    while ( SPI_STATUS_TX_FULL & SPI_GetStatus(BOARD_LOOP_SPI_PORT) )
    {}
    SPI_PutData(BOARD_LOOP_SPI_PORT, c);
    }

    /* SPI rx. */
    uint8_t spi3_getbyte(void)
    {
    /* Polling for rx done. */
    while (0u == (SPI_STATUS_RX_DONE & SPI_GetStatus(BOARD_LOOP_SPI_PORT)) )
    {}
    return SPI_GetData(BOARD_LOOP_SPI_PORT);
    }

  3. 顺便将LED4, LED5的控制单独拉出,可以作为debug的辅助手段
    led.h
    #ifndef _LED_H_
    #define _LED_H_

    #include “type_def.h”

    enum LED_NUM {
    LED4,
    LED5,
    };

    void led_init(void);

    void led_on(u8 led);

    void led_off(u8 led);
    #endif

  4. led.c
    #include “led.h”
    #include “hal_rcc.h”
    #include “hal_gpio.h”

    static void led_gpio_init(void)
    {
    GPIO_Init_Type gpio_init;

    /* LED4. */
    gpio_init.Pins = GPIO_PIN_0;
    gpio_init.PinMode = GPIO_PinMode_Out_PushPull;
    gpio_init.Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOI, &gpio_init);

    /* LED5. */
    gpio_init.Pins = GPIO_PIN_2;
    gpio_init.PinMode = GPIO_PinMode_Out_PushPull;
    gpio_init.Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOD, &gpio_init);

    }

    void led_init(void)
    {
    /* GPIOD. */
    RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOD, true);
    RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOD);

    /* GPIOI. */
    RCC_EnableAHB1Periphs(RCC_AHB1_PERIPH_GPIOI, true);
    RCC_ResetAHB1Periphs(RCC_AHB1_PERIPH_GPIOI);

    led_gpio_init();

    }

    void led_on(u8 led)
    {
    switch (led) {
    case LED4:
    GPIO_WriteBit(GPIOI, GPIO_PIN_0, 0u);
    break;
    case LED5:
    GPIO_WriteBit(GPIOD, GPIO_PIN_2, 0u);
    break;
    default:
    break;
    }
    }

    void led_off(u8 led)
    {
    switch (led) {
    case LED4:
    GPIO_WriteBit(GPIOI, GPIO_PIN_0, 1u);
    break;
    case LED5:
    GPIO_WriteBit(GPIOD, GPIO_PIN_2, 1u);
    break;
    default:
    break;
    }
    }

  5. 以上完成后,OLED驱动移植的前期准备工作已经完成,现在开始将STM32上的OLED控制代码移到MM32F5270上来。OLED使用的是中景园的3.12寸 256X64 单色OLED屏幕,淘宝连接https://item.taobao.com/item…。
    控制引脚如图所示

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

原始STM32控制代码如下所示:
stm32的oled.h

#ifndef __OLED_H#define __OLED_H #include "sys.h"#define OLED_USE_SOFT_SPI 0#define OLED_CS_Pin GPIO_PIN_12#define OLED_CS_GPIO_Port GPIOH#define OLED_DC_Pin GPIO_PIN_12#define OLED_DC_GPIO_Port GPIOB#define OLED_RES_Pin GPIO_PIN_11#define OLED_RES_GPIO_Port GPIOH#if OLED_USE_SOFT_SPI#define SOFT_SPI_MOSI_Pin GPIO_PIN_7#define SOFT_SPI_MOSI_GPIO_Port GPIOF#define SOFT_SPI_MISO_Pin GPIO_PIN_8#define SOFT_SPI_MISO_GPIO_Port GPIOF#define SOFT_SPI_SCK_Pin GPIO_PIN_9#define SOFT_SPI_SCK_GPIO_Port GPIOF#endif#define USE_HORIZONTAL 1  //设置显示方向 0:正向显示;1:旋转180度显示#ifndef PIN_RESET#define PIN_RESET 0#define PIN_SET 1#endifvoid OLED_WR_REG(u8 reg);void OLED_WR_Byte(u8 dat);void Column_Address(u8 a,u8 b);void Row_Address(u8 a,u8 b);void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color);void OLED_ShowChinese(u8 x,u8 y,u8 *s,u8 sizey,u8 mode);void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode);void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode);u32 oled_pow(u8 m,u8 n);void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode);void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);void OLED_Init(void);void OLED_GPIO_Init(void);#endif

stm32的oled.c

#include "oledfont.h"#include "delay.h"#include "oled.h"#include "osal.h"#include "spi.h"#if OLED_USE_SOFT_SPIstatic void OLED_SCL_Clr(){    HAL_GPIO_WritePin(SOFT_SPI_SCK_GPIO_Port, SOFT_SPI_SCK_Pin, GPIO_PIN_RESET); //SCL}static void OLED_SCL_Set(){    HAL_GPIO_WritePin(SOFT_SPI_SCK_GPIO_Port, SOFT_SPI_SCK_Pin, GPIO_PIN_SET);}static void OLED_SDA_Clr(){    HAL_GPIO_WritePin(SOFT_SPI_MOSI_GPIO_Port, SOFT_SPI_MOSI_Pin, GPIO_PIN_RESET); //SDA}static void OLED_SDA_Set(){    HAL_GPIO_WritePin(SOFT_SPI_MOSI_GPIO_Port, SOFT_SPI_MOSI_Pin, GPIO_PIN_SET);}#endifstatic void OLED_RES_Clr(){    HAL_GPIO_WritePin(OLED_RES_GPIO_Port, OLED_RES_Pin, GPIO_PIN_RESET); //RES}static void OLED_RES_Set(){    HAL_GPIO_WritePin(OLED_RES_GPIO_Port, OLED_RES_Pin, GPIO_PIN_SET);}static void OLED_DC_Clr(){    HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, GPIO_PIN_RESET); //DC}static void OLED_DC_Set(){    HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, GPIO_PIN_SET);}static void OLED_CS_Clr(){    HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_RESET); //CS}static void OLED_CS_Set(){    HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_SET);}static void OLED_Write_Byte(u8 dat){#if OLED_USE_SOFT_SPI    u8 i;    for(i=0;i<8;i++)    { OLED_SCL_Clr(); //delay_us(200); if(dat&0x80) {    OLED_SDA_Set(); } else  {    OLED_SDA_Clr(); } //delay_us(20); OLED_SCL_Set(); //delay_us(200); dat<<=1;}#else    SPI_Write_Byte(2, dat);      #endif}void OLED_WR_Bus(u8 dat){    OLED_CS_Clr();    OLED_Write_Byte(dat);OLED_CS_Set();}void OLED_WR_REG(u8 reg){   OLED_DC_Clr();     OLED_WR_Bus(reg);  OLED_DC_Set();    }void OLED_WR_Byte(u8 dat){ OLED_WR_Bus(dat);}void Column_Address(u8 a,u8 b){    OLED_WR_REG(0x15);// Set Column Address    OLED_WR_Byte(0x1c+a);    OLED_WR_Byte(0x1c+b);}void Row_Address(u8 a,u8 b){    OLED_WR_REG(0x75);// Row Column Address    OLED_WR_Byte(a);    OLED_WR_Byte(b);    OLED_WR_REG(0x5C);    //写RAM命令}void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color){    u8 x,y;    xstr/=4;    xend/=4;    Column_Address(xstr,xend-1);    Row_Address(ystr,yend-1);    for(x=xstr;x<xend;x++)    { for(y=ystr;y<yend;y++) {     OLED_WR_Byte(color);     OLED_WR_Byte(color);    }  }}void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode){    u8 c,i,k,m,t=4,size2,data1,DATA=0;    size2=(sizey/16+((sizey%16)?1:0))*sizey;    c=chr-' ';    Column_Address(x/4,x/4+sizey/8-1);    Row_Address(y,y+sizey-1);    for(i=0;i<size2;i++)    { if(sizey==16) {     data1=ascii_1608[c][i];//8x16 ASCII码 } else if(sizey==24) {     data1=ascii_2412[c][i];//12x24 ASCII码 } else if(sizey==32) {     data1=ascii_3216[c][i];//16x32 ASCII码 } if(sizey%16) {     m=sizey/16+1;     if(i%m) t=2;     else t=4; } for(k=0;k<t;k++) {     if(data1&(0x01<<(k*2+0)))     {  DATA=0xf0;     }     if(data1&(0x01<<(k*2+1)))     {  DATA|=0x0f;     }     if(mode)     {  OLED_WR_Byte(~DATA);     }else     {  OLED_WR_Byte(DATA);     }     DATA=0; }  }}void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode){    while(*dp!='\0')    {      OLED_ShowChar(x,y,*dp,sizey,mode); dp++; x+=sizey/2;    }}u32 oled_pow(u8 m,u8 n){    u32 result=1;    while(n--)result*=m; return result;}void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode){   u8 t,temp;    u8 enshow=0;    for(t=0;t<len;t++)    { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) {     if(temp==0)     {  OLED_ShowChar(x+(sizey/2)*t,y,' ',sizey,mode);  continue;     }else enshow=1;  }  OLED_ShowChar(x+(sizey/2)*t,y,temp+'0',sizey,mode);     }}void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode){    u16 i,num;    length=(length/4+((length%4)?1:0))*4;    num=length/2*width;    x/=4;    length/=4;    Column_Address(x,x+length-1);    Row_Address(y,y+width-1);    for(i=0;i<num;i++)    { if(mode) {     OLED_WR_Byte(~BMP[i]); }else {     OLED_WR_Byte(BMP[i]); }    }}void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode){    u8 k,DATA=0;    u16 i,num;    length=(length/8+((length%8)?1:0))*8;    num=length*width/8;    x/=4;    length/=4;    Column_Address(x,x+length-1);    Row_Address(y,y+width-1);    for(i=0;i<num;i++)    { for(k=0;k<4;k++) {     if(BMP[i]&(0x01<<(k*2+0)))     {  DATA=0xf0;     }     if(BMP[i]&(0x01<<(k*2+1)))     {  DATA|=0x0f;     }     if(mode)     {  OLED_WR_Byte(~DATA);     }else     {  OLED_WR_Byte(DATA);     }     DATA=0; }    }}void OLED_Init(void){ OLED_RES_Clr(); delay_ms(10); OLED_RES_Set();    OLED_WR_REG(0xfd);  /*Command Lock*/     OLED_WR_Byte(0x12);    OLED_WR_REG(0xae); //Sleep In  OLED_WR_REG(0xb3);    //Set Display Clock Divide Ratio/Oscillator Frequency     OLED_WR_Byte(0x91);    OLED_WR_REG(0xca);    //Set Multiplex Ratio     OLED_WR_Byte(0x3f);    OLED_WR_REG(0xa2);    //Set Display Offset     OLED_WR_Byte(0x00);    // OLED_WR_REG(0xa1);    //Set Display Start Line     OLED_WR_Byte(0x00);    // OLED_WR_REG(0xa0);    //Set Re-Map $ Dual COM Line Mode    if(USE_HORIZONTAL)    {      OLED_WR_Byte(0x14);    }    else    {      OLED_WR_Byte(0x06);    } OLED_WR_REG(0xB5);    //Set GPIO     OLED_WR_Byte(0x00);     OLED_WR_REG(0xab);    //Function Selection    OLED_WR_Byte(0x01);    // OLED_WR_REG(0xb4);    //Enable External VSL     OLED_WR_Byte(0xa0);    //    OLED_WR_Byte(0xfd);    // OLED_WR_REG(0xc1);    //Set Contrast Current    OLED_WR_Byte(0xff);     OLED_WR_REG(0xc7);    //Master Contrast Current Control    OLED_WR_Byte(0x0f);    //    OLED_WR_REG(0xb9);    //Select Default Linear Gray Scale Table  OLED_WR_REG(0xb1);    //Set Phase Length    OLED_WR_Byte(0xe2);     OLED_WR_REG(0xd1);    //Enhance Driving Scheme Capability     OLED_WR_Byte(0x82); OLED_WR_Byte(0x20); OLED_WR_REG(0xbb);    //Set Pre-Charge Voltage     OLED_WR_Byte(0x1f); OLED_WR_REG(0xb6);    //Set Second Pre-Charge Period     OLED_WR_Byte(0x08); OLED_WR_REG(0xbe);    //Set VCOMH Deselect Level     OLED_WR_Byte(0x07);     OLED_WR_REG(0xa6);    //Set Display Mode OLED_Fill(0,0,256,64,0x00);   //Clear Screen    OLED_WR_REG(0xaf);    //Sleep Out    LOG_INFO("oled init done");}void OLED_GPIO_Init(void){    GPIO_InitTypeDef GPIO_InitStruct = {0};  /* GPIO Ports Clock Enable */     __HAL_RCC_GPIOB_CLK_ENABLE();     __HAL_RCC_GPIOH_CLK_ENABLE();      /*Configure GPIO pin Output Level */      HAL_GPIO_WritePin(OLED_CS_GPIO_Port, OLED_CS_Pin, GPIO_PIN_RESET);    HAL_GPIO_WritePin(OLED_DC_GPIO_Port, OLED_DC_Pin, GPIO_PIN_RESET);    HAL_GPIO_WritePin(OLED_RES_GPIO_Port, OLED_RES_Pin, GPIO_PIN_RESET);    /*Configure GPIO pin Output Level */#if OLED_USE_SOFT_SPI      HAL_GPIO_WritePin(GPIOF, SOFT_SPI_MOSI_Pin|SOFT_SPI_SCK_Pin, GPIO_PIN_RESET);#endif /*Configure GPIO pins : OLED_CS_Pin OLED_DC_Pin OLED_RES_Pin */    GPIO_InitStruct.Pin = OLED_CS_Pin;    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;    GPIO_InitStruct.Pull = GPIO_NOPULL;    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;    HAL_GPIO_Init(OLED_CS_GPIO_Port, &GPIO_InitStruct);    GPIO_InitStruct.Pin = OLED_DC_Pin;    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;    GPIO_InitStruct.Pull = GPIO_NOPULL;    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;    HAL_GPIO_Init(OLED_DC_GPIO_Port, &GPIO_InitStruct);    GPIO_InitStruct.Pin = OLED_RES_Pin;    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;    GPIO_InitStruct.Pull = GPIO_NOPULL;    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;    HAL_GPIO_Init(OLED_RES_GPIO_Port, &GPIO_InitStruct);#if OLED_USE_SOFT_SPI    /*Configure GPIO pins : OLED_CS_Pin OLED_DC_Pin OLED_RES_Pin */    GPIO_InitStruct.Pin = SOFT_SPI_MOSI_Pin | SOFT_SPI_SCK_Pin;    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;    GPIO_InitStruct.Pull = GPIO_NOPULL;    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;    HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);    GPIO_InitStruct.Pin = SOFT_SPI_MISO_Pin;    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;    GPIO_InitStruct.Pull = GPIO_PULLUP;    HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);#endif}

分析OLED的LOG,发现只需要更改RES, DC, CS的GPIO控制即可。将OLED的GPIO控制由STM32 HAL库控制更改为MM32F5270 HAL控制,修改代码如下:
MM32F5270的oled.h

#ifndef __OLED_H#define __OLED_H #include "type_def.h"#define USE_HORIZONTAL 1  //设置显示方向 0:正向显示;1:旋转180度显示#define OLED_USE_SOFT_SPI 0void OLED_control_gpio_init(void);void OLED_WR_REG(u8 reg);void OLED_WR_Byte(u8 dat);void Column_Address(u8 a,u8 b);void Row_Address(u8 a,u8 b);void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color);void OLED_ShowChinese(u8 x,u8 y,u8 *s,u8 sizey,u8 mode);void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode);void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode);u32 oled_pow(u8 m,u8 n);void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode);void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode);void OLED_Init(void);#endif

MM32F5270的oled.c

#include "oledfont.h"#include "delay.h"#include "oled.h"#include "demo_spi.h"#include "hal_rcc.h"#include "hal_gpio.h"#include "stdio.h"~~*void OLEDcontrolgpioinit(void){    //GPIOA    RCCEnableAHB1Periphs(RCCAHB1PERIPHGPIOA, true);    RCCResetAHB1Periphs(RCCAHB1PERIPHGPIOA);#if OLEDUSESOFTSPI    RCCEnableAHB1Periphs(RCCAHB1PERIPHGPIOC, true);    RCCResetAHB1Periphs(RCCAHB1PERIPHGPIOC);#endif    GPIOInitType gpioinit;    //RES PA10    gpioinit.Pins  = GPIOPIN10;    gpioinit.PinMode  = GPIOPinModeOutPushPull;    gpioinit.Speed = GPIOSpeed50MHz;    GPIOInit(GPIOA, &gpioinit);    //DC PA12    gpioinit.Pins  = GPIOPIN12;    gpioinit.PinMode  = GPIOPinModeOutPushPull;    gpioinit.Speed = GPIOSpeed50MHz;    GPIOInit(GPIOA, &gpioinit);    //CS PA15    gpioinit.Pins  = GPIOPIN15;    gpioinit.PinMode  = GPIOPinModeOutPushPull;    gpioinit.Speed = GPIOSpeed50MHz;    GPIOInit(GPIOA, &gpioinit);#if OLEDUSESOFTSPI    //soft SCL PC10    gpioinit.Pins  = GPIOPIN10;    gpioinit.PinMode  = GPIOPinModeOutPushPull;    gpioinit.Speed = GPIOSpeed50MHz;    GPIOInit(GPIOC, &gpioinit);    //soft MOSI PC12    gpioinit.Pins  = GPIOPIN12;    gpioinit.PinMode  = GPIOPinModeOutPushPull;    gpioinit.Speed = GPIOSpeed50MHz;    GPIOInit(GPIOC, &gpioinit);#endif}#if OLEDUSESOFTSPIstatic void OLEDSOFTSPISCKClr(){    GPIOWriteBit(GPIOC, GPIOPIN10, 0u); //RES}static void OLEDSOFTSPISCKSet(){    GPIOWriteBit(GPIOC, GPIOPIN10, 1u); //RES}static void OLEDSOFTSPISDAClr(){    GPIOWriteBit(GPIOC, GPIOPIN12, 0u); //RES}static void OLEDSOFTSPISDASet(){    GPIOWriteBit(GPIOC, GPIOPIN12, 1u); //RES}#endifstatic void OLEDRESClr(){    GPIOWriteBit(GPIOA, GPIOPIN10, 0u); //RES}static void OLEDRESSet(){    GPIOWriteBit(GPIOA, GPIOPIN10, 1u); //RES}static void OLEDDCClr(){    GPIOWriteBit(GPIOA, GPIOPIN12, 0u); //RES}static void OLEDDCSet(){    GPIOWriteBit(GPIOA, GPIOPIN12, 1u); //RES}static void OLEDCSClr(){    GPIOWriteBit(GPIOA, GPIOPIN15, 0u); //RES}*~~static void OLED_CS_Set(){    GPIO_WriteBit(GPIOA, GPIO_PIN_15, 1u); //RES}static void OLED_Write_Byte(u8 dat){#if OLED_USE_SOFT_SPI    u8 i;    for(i=0;i<8;i++)    { OLED_SOFT_SPI_SCK_Clr(); //delay_us(20); if(dat&0x80) {    OLED_SOFT_SPI_SDA_Set(); } else  {    OLED_SOFT_SPI_SDA_Clr(); } //delay_us(20); OLED_SOFT_SPI_SCK_Set(); //delay_us(200); dat<<=1;}#else    spi3_putbyte(dat);#endif}void OLED_WR_Bus(u8 dat){    OLED_CS_Clr();    OLED_Write_Byte(dat);    OLED_CS_Set();}void OLED_WR_REG(u8 reg){   OLED_DC_Clr();OLED_WR_Bus(reg);    OLED_DC_Set();    }void OLED_WR_Byte(u8 dat){ OLED_WR_Bus(dat);}void Column_Address(u8 a,u8 b){    OLED_WR_REG(0x15);// Set Column Address    OLED_WR_Byte(0x1c+a);    OLED_WR_Byte(0x1c+b);}void Row_Address(u8 a,u8 b){    OLED_WR_REG(0x75);// Row Column Address    OLED_WR_Byte(a);    OLED_WR_Byte(b);    OLED_WR_REG(0x5C);    //写RAM命令}void OLED_Fill(u16 xstr,u8 ystr,u16 xend,u8 yend,u8 color){    u8 x,y;    xstr/=4;    xend/=4;    Column_Address(xstr,xend-1);    Row_Address(ystr,yend-1);    for(x=xstr;x<xend;x++)    { for(y=ystr;y<yend;y++) {     OLED_WR_Byte(color);     OLED_WR_Byte(color);    }  }}void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 sizey,u8 mode){    u8 c,i,k,m,t=4,size2,data1,DATA=0;    size2=(sizey/16+((sizey%16)?1:0))*sizey;    c=chr-' ';    Column_Address(x/4,x/4+sizey/8-1);    Row_Address(y,y+sizey-1);    for(i=0;i<size2;i++)    { if(sizey==16) {     data1=ascii_1608[c][i];//8x16 ASCII码 } else if(sizey==24) {     data1=ascii_2412[c][i];//12x24 ASCII码 } else if(sizey==32) {     data1=ascii_3216[c][i];//16x32 ASCII码 } if(sizey%16) {     m=sizey/16+1;     if(i%m) t=2;     else t=4; } for(k=0;k<t;k++) {     if(data1&(0x01<<(k*2+0)))     {  DATA=0xf0;     }     if(data1&(0x01<<(k*2+1)))     {  DATA|=0x0f;     }     if(mode)     {  OLED_WR_Byte(~DATA);     }else     {  OLED_WR_Byte(DATA);     }     DATA=0; }  }}void OLED_ShowString(u8 x,u8 y,u8 *dp,u8 sizey,u8 mode){    while(*dp!='\0')    {      OLED_ShowChar(x,y,*dp,sizey,mode); dp++; x+=sizey/2;    }}u32 oled_pow(u8 m,u8 n){    u32 result=1;    while(n--)result*=m; return result;}void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 sizey,u8 mode){   u8 t,temp;    u8 enshow=0;    for(t=0;t<len;t++)    { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) {     if(temp==0)     {  OLED_ShowChar(x+(sizey/2)*t,y,' ',sizey,mode);  continue;     }else enshow=1;  }  OLED_ShowChar(x+(sizey/2)*t,y,temp+'0',sizey,mode);     }}void OLED_DrawBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode){    u16 i,num;    length=(length/4+((length%4)?1:0))*4;    num=length/2*width;    x/=4;    length/=4;    Column_Address(x,x+length-1);    Row_Address(y,y+width-1);    for(i=0;i<num;i++)    { if(mode) {     OLED_WR_Byte(~BMP[i]); }else {     OLED_WR_Byte(BMP[i]); }    }}void OLED_DrawSingleBMP(u8 x,u8 y,u16 length,u8 width,const u8 BMP[],u8 mode){    u8 k,DATA=0;    u16 i,num;    length=(length/8+((length%8)?1:0))*8;    num=length*width/8;    x/=4;    length/=4;    Column_Address(x,x+length-1);    Row_Address(y,y+width-1);    for(i=0;i<num;i++)    { for(k=0;k<4;k++) {     if(BMP[i]&(0x01<<(k*2+0)))     {  DATA=0xf0;     }     if(BMP[i]&(0x01<<(k*2+1)))     {  DATA|=0x0f;     }     if(mode)     {  OLED_WR_Byte(~DATA);     }else     {  OLED_WR_Byte(DATA);     }     DATA=0; }    }}void OLED_Init(void){ OLED_RES_Clr(); delay_ms(10); OLED_RES_Set();    OLED_WR_REG(0xfd);  /*Command Lock*/     OLED_WR_Byte(0x12);    OLED_WR_REG(0xae); //Sleep In  OLED_WR_REG(0xb3);    //Set Display Clock Divide Ratio/Oscillator Frequency     OLED_WR_Byte(0x91);    OLED_WR_REG(0xca);    //Set Multiplex Ratio     OLED_WR_Byte(0x3f);    OLED_WR_REG(0xa2);    //Set Display Offset     OLED_WR_Byte(0x00);    // OLED_WR_REG(0xa1);    //Set Display Start Line     OLED_WR_Byte(0x00);    // OLED_WR_REG(0xa0);    //Set Re-Map $ Dual COM Line Mode    if(USE_HORIZONTAL)    {      OLED_WR_Byte(0x14);    }    else    {      OLED_WR_Byte(0x06);    } OLED_WR_REG(0xB5);    //Set GPIO     OLED_WR_Byte(0x00);     OLED_WR_REG(0xab);    //Function Selection    OLED_WR_Byte(0x01);    // OLED_WR_REG(0xb4);    //Enable External VSL     OLED_WR_Byte(0xa0);    //    OLED_WR_Byte(0xfd);    // OLED_WR_REG(0xc1);    //Set Contrast Current    OLED_WR_Byte(0xff);     OLED_WR_REG(0xc7);    //Master Contrast Current Control    OLED_WR_Byte(0x0f);    //    OLED_WR_REG(0xb9);    //Select Default Linear Gray Scale Table  OLED_WR_REG(0xb1);    //Set Phase Length    OLED_WR_Byte(0xe2);     OLED_WR_REG(0xd1);    //Enhance Driving Scheme Capability     OLED_WR_Byte(0x82); OLED_WR_Byte(0x20); OLED_WR_REG(0xbb);    //Set Pre-Charge Voltage     OLED_WR_Byte(0x1f); OLED_WR_REG(0xb6);    //Set Second Pre-Charge Period     OLED_WR_Byte(0x08); OLED_WR_REG(0xbe);    //Set VCOMH Deselect Level     OLED_WR_Byte(0x07);     OLED_WR_REG(0xa6);    //Set Display Mode OLED_Fill(0,0,256,64,0x00);   //Clear Screen    OLED_WR_REG(0xaf);    //Sleep Out    printf("oled init done\n");}

对应只需要改动几个控制GPIO的具体实现,可以非常快速的进行移植

  1. 最后放上main函数,在main函数里要对用到的各个硬件做初始化,代码如下:

    /*
    * Copyright 2021 MindMotion Microelectronics Co., Ltd.
    * All rights reserved.
    *
    * SPDX-License-Identifier: BSD-3-Clause
    */

    #include
    #include
    #include “clock_init.h”
    #include “demo_uart.h”
    #include “conv_timer.h”
    #include “demo_spi.h”
    #include “led.h”
    #include “delay.h”
    #include “oled.h”
    /*
    * Functions.
    */

    int main(void)
    {
    BOARD_InitBootClocks();
    timer1_init();
    uart1_init();
    #if !OLED_USE_SOFT_SPI
    spi3_init();
    #endif
    led_init();

    OLED_control_gpio_init();
    OLED_Init();
    //OLED_ShowString(0, 0, “hello world”, 16, 0);
    printf(“\r\ntim_basic example.\r\n”);

    timer1_start();
    led_off(LED4);
    led_off(LED5);

    while (1)
    {
    //spi3_putbyte(0xaa);
    led_on(LED4);
    delay_1ms();
    led_off(LED4);
    delay_1ms();
    OLED_ShowString(0, 0, " ARM STAR-MC1 MM32F5270", 16, 0);
    OLED_ShowString(0, 16, " aijishu", 16, 0);
    OLED_ShowString(0, 32, “https://aijishu.com”, 16, 0);

    }
    }

    /* EOF. */

    显示效果如图所示:

【MM32F5270开发板试用】快速移植STM32应用到MM32F5270(以OLED为例)

四 总结

MindSDK已经提供了封装良好的驱动代码,能够非常方便的做开发,对于STM32平台的应用,能够非常快速的进行移植,所需要的工作量非常小。
STM32CubeMX只是提供了一个可视化的配置界面,但是其生成的代码对于一些比较大型的项目来说,其组织形式和代码复用性相比MindSDK并不会有优势。

MindSDK目前提供的轮子,已经能够应付一些基本需求。但是目前,MindSDK缺乏对FreeRTOS,RTThread等RTOS的支持。如果官方能够解决RTOS的问题,相信我们能够基于MindSDK用MM32F5230作出更多有趣的应用。

五 参考链接

【灵动官网】PLUS-F5270开发板介绍(含资料链接):https://www.mindmotion.com.cn…
【灵动官网】MM32F5270芯片介绍(含资料链接):https://www.mindmotion.com.cn…
【极术社区】基于灵动MM32F5系列芯片的PLUS-F5270开发板资料(包含逐飞科技网盘链接):https://aijishu.com/a/1060000…
【极术社区】[MM32F5270开发板试用] 基本开发环境搭建篇:https://aijishu.com/a/1060000…
【极术社区】带灵动微MM32F5的Plus-F5270开发板怎么玩?https://aijishu.com/a/1060000…

游戏市场