> 文档中心 > OpenHarmony解读之设备认证:sts协议-客户端发起sts end请求

OpenHarmony解读之设备认证:sts协议-客户端发起sts end请求


一、概述

客户端收到来自服务端的响应消息之后,针对消息内容进行相关处理并再次发起sts end请求,目的在于发送可信认证数据,使得服务端可以验证客户端的身份。本文将对这个过程进行详细介绍。

二、源码分析

这一模块的源码位于:/base/security/deviceauth。

1. 首先是parse_auth_start_response函数,解析响应消息,用响应的结构体获取消息的关键字段数据。
/*函数功能:解析认证start响应消息函数参数:    payload:消息负载    data_type:数据类型函数返回值:    成功:返回解析完毕的数据结构    失败:NULL*/void *parse_auth_start_response(const char *payload, enum json_object_data_type data_type){    struct sts_start_response_data *auth_start_response = (struct sts_start_response_data *)MALLOC(sizeof(struct sts_start_response_data));//申请start响应数据结构体空间    if (auth_start_response == NULL) { return NULL;    }    (void)memset_s(auth_start_response, sizeof(*auth_start_response), 0, sizeof(*auth_start_response));//清空该空间//如果消息负载为json格式的字符串,则将json格式的数据解析成cjson结构体对象    json_handle obj = parse_payload(payload, data_type);    if (obj == NULL) { LOGE("Parse AuthStart Response parse payload failed");//解析失败 goto error;    }    /* authData *///获取authData,将原来的十六进制字符串格式转换为byte数组格式    int32_t result = byte_convert(obj, FIELD_AUTH_DATA, auth_start_response->auth_data.auth_data,      &auth_start_response->auth_data.length, HC_AUTH_DATA_BUFF_LEN);    if (result != HC_OK) {//解析失败 LOGE("Parse AuthStart Response failed, field is null in authData"); goto error;    }    /* challenge *///获取challenge,将原来的十六进制字符串格式转换为byte数组格式    result = byte_convert(obj, FIELD_CHALLENGE, auth_start_response->challenge.challenge,     &auth_start_response->challenge.length, CHALLENGE_BUFF_LENGTH);    if (result != HC_OK) {//解析失败 LOGE("Parse AuthStart Response failed, field is null in challenge"); goto error;    }    /* salt *///获取salt,将原来的十六进制字符串格式转换为byte数组格式    result = byte_convert(obj, FIELD_SALT, auth_start_response->salt.salt,     (uint32_t *)&auth_start_response->salt.length, HC_SALT_BUFF_LEN);    if (result != HC_OK) {//解析失败 LOGE("Parse AuthStart Response failed, field is null in salt"); goto error;    }    /* epk *///获取epk,将原来的十六进制字符串格式转换为byte数组格式    result = byte_convert(obj, FIELD_EPK, auth_start_response->epk.stpk,     &auth_start_response->epk.length, HC_ST_PUBLIC_KEY_LEN);    if (result != HC_OK) {//解析失败 LOGE("Parse AuthStart Response failed, field is null in epk"); goto error;    }    /* version */    json_pobject obj_ver = get_json_obj(obj, FIELD_VERSION);    bool ret = parse_version(obj_ver, &auth_start_response->self_version, &auth_start_response->self_support_version);//解析版本号    if (!ret) { LOGE("Parse AuthStart Response failed, field is null in version"); goto error;    }    free_payload(obj, data_type);//释放内存    return (void *)auth_start_response;//返回响应消息结构体error:    free_payload(obj, data_type);    FREE(auth_start_response);    return NULL;}
2. 然后到消息处理阶段,执行proc_sts_response_message函数,处理sts响应消息。
/*函数功能:处理sts响应消息函数参数:    handle:hichain实例    nav:导航消息,消息头格式    receive:接收的消息    send:待发送消息函数返回值:    成功:0    失败:error num*/static int32_t proc_sts_response_message(struct hichain *handle, struct header_analysis *nav,    struct message *receive, struct message *send)#if !(defined(_CUT_STS_) || defined(_CUT_STS_CLIENT_)){    DBG_OUT("Object %u proc sts %d response message.", sts_client_sn(handle->sts_client), nav->msg_type);    int32_t ret;    if (nav->msg_type == STS_START_MSG) {//根据消息类型选择不同的处理接口 ret = send_sts_end_request(handle->sts_client, receive, send);//构造sts end请求数据    } else if (nav->msg_type == STS_END_MSG) { ret = receive_sts_end_response(handle->sts_client, receive);//处理sts end响应消息 if (ret == HC_OK) {     handle->cb.set_session_key(&handle->identity, &handle->sts_client->service_key);//设置会话密钥service_key }    } else { return HC_UNKNOW_MESSAGE;    }    return ret;}
3. send_sts_end_request函数,构造sts协议的end请求,为该请求准备相关数据。
/*函数功能:构造sts协议的end请求,为该请求准备相关数据函数参数:    sts_client:sts客户端对象    receive:接收到的消息    send:待发送消息体函数返回值:    成功:0    失败:error num*/int32_t send_sts_end_request(struct sts_client *sts_client, const struct message *receive, struct message *send){    DBG_OUT("Receive data send_sts_start_response");    check_ptr_return_val(sts_client, HC_INPUT_ERROR);//检查参数有效性    check_ptr_return_val(receive, HC_INPUT_ERROR);    check_ptr_return_val(send, HC_INPUT_ERROR);    struct sts_start_response_data *receive_data = (struct sts_start_response_data *)receive->payload;//用sts_start_response_data结构接收消息负载    struct sts_end_request_data *send_data = (struct sts_end_request_data *)MALLOC(sizeof(struct sts_end_request_data));//定义end请求结构体对象并申请内存空间    if (send_data == NULL) { LOGE("Malloc struct STS_END_REQUEST_DATA failed"); return HC_MALLOC_FAILED;    }    (void)memset_s(send_data, sizeof(*send_data), 0, sizeof(*send_data));//清空该空间    int32_t ret = send_end_request(sts_client, receive_data, send_data);//构造end请求数据    if (ret != HC_OK) {//执行失败 LOGE("Called send_end_request failed, error code is %d", ret); FREE(send_data); send->msg_code = INFORM_MESSAGE;    } else {//执行成功 DBG_OUT("Called send_end_request success"); send->msg_code = AUTH_ACK_REQUEST;//置待发送的消息码为AUTH_ACK_REQUEST send->payload = send_data;//赋值消息负载    }    return ret;}/*函数功能:准备待发送的end请求数据函数参数:    handle:句柄,可用相关结构体获取    receive_data:接收到的消息数据    send_data:待发送数据地址函数返回值:    成功:0    失败:error num*/int32_t send_end_request(void *handle, void *receive_data, void *send_data){    check_ptr_return_val(handle, HC_INPUT_ERROR);//检查参数有效性    check_ptr_return_val(receive_data, HC_INPUT_ERROR);    check_ptr_return_val(send_data, HC_INPUT_ERROR);    struct key_agreement_client *client = (struct key_agreement_client *)handle;//用密钥协商客户端接收该对象    struct key_agreement_protocol *base = &client->protocol_base_info;//定义密钥协商协议基础信息    DBG_OUT("Object %u begin receive start response data and send end request data", base->sn);    if (is_state_error(client, SEND_END_REQUEST)) {//判断协议状态和协议动作是否对应错误 LOGE("Object %u state error", base->sn); return PROTOCOL_STATE_ERROR;    }    struct client_virtual_func_group *funcs = &client->package_funcs;//客户端虚函数组,定义打包函数    int32_t ret = funcs->parse_start_response_data(handle, receive_data);//解析start响应数据    if (ret != HC_OK) { set_state(base, PROTOCOL_ERROR); LOGE("Object %u parse start response data failed, error code is %d", base->sn, ret); return ret;    }    ret = funcs->build_end_request_data(handle, send_data);//构造end请求数据保存在send_data中    if (ret != HC_OK) { set_state(base, PROTOCOL_ERROR); LOGE("Object %u build end request data failed, error code is %d", base->sn, ret); return ret;    }    set_state(base, END_REQUEST);//设置协议状态为END_REQUEST    set_last_time_sec(base);//设置上一次的时间    DBG_OUT("Object %u receive start response data and send end request data success", base->sn);    return HC_OK;}
4. 在上述函数中调用parse_start_response_data函数,解析start响应数据。
/*函数功能:解析start响应数据函数参数:    handle:sts客户端对象    data:接收到的数据函数返回值:    成功:0    失败:error num详细:    解析出相关数据填充sts_client对象,然后根据相关数据基于hkdf算法生成客户端会话密钥。*/static int32_t parse_start_response_data(void *handle, void *data){    struct sts_client *sts_client = (struct sts_client *)handle;//接收sts客户端对象    struct sts_start_response_data *receive = (struct sts_start_response_data *)data;//同sts_start_response_data结构接收数据    sts_client->salt = receive->salt;//赋值salt    sts_client->peer_public_key = receive->epk;//赋值对端临时公钥    sts_client->peer_challenge = receive->challenge;//赋值对端challenge    sts_client->peer_auth_data = receive->auth_data;//保存对端认证数据    sts_client->peer_user_type = receive->peer_user_type;//赋值对端用户类型    struct sts_shared_secret shared_secret;//定义sts共享密钥    //根据本端临时私钥self_private_key和对端临时公钥peer_public_key计算sts共享密钥shared_secret    int32_t ret = compute_sts_shared_secret(&sts_client->self_private_key,  &sts_client->peer_public_key, &shared_secret);    if (ret != HC_OK) { LOGE("Object %u compute_shared_secret failed, error code is %d", sts_client_sn(sts_client), ret); return ret;    }    //共享密钥shared_secret作为种子+salt+"hichain_auth_info"根据hkdf算法计算出一个派生密钥作为会话密钥session_key    ret = compute_hkdf((struct var_buffer *)&shared_secret, &sts_client->salt, HICHAIN_AUTH_INFO,  STS_SESSION_KEY_LENGTH, (struct var_buffer *)&sts_client->session_key);    if (ret != HC_OK) {//生成失败 LOGE("Object %u compute_hkdf failed, error code is %d", sts_client_sn(sts_client), ret); return HC_STS_OBJECT_ERROR;    }    return HC_OK;}
5. build_end_request_data函数,构造end请求数据。
/*函数功能:构造end请求数据函数参数:    handle:sts_client对象    data:待发送数据函数返回值:    成功:0    失败:error num详细:    首先验证对端签名数据,即验证对端身份是否可信,然后产生本端签名数据作为本端验证数据,利用本端私钥签名。然后进行对称密钥加密。*/static int32_t build_end_request_data(void *handle, void *data){    struct sts_client *sts_client = (struct sts_client *)handle;//接收sts客户端对象    struct sts_end_request_data *send = (struct sts_end_request_data *)data;//sts end请求数据结构接收该数据    int32_t ret = verify_data(handle);//验证响应签名数据,即验证对端身份    if (ret != HC_OK) { return ret;    }    struct signature request_sign = { 0, {0} };//定义请求签名缓冲区    ret = generate_sts_request_sign(handle, &request_sign);//生成sts请求签名    if (ret != HC_OK) { return ret;    }    struct uint8_buff out_auth_data;//定义输出认证数据缓冲区    ret = init_auth_data(&out_auth_data);//初始化认证数据,申请缓冲区并清零    if (ret != HC_OK) { return ret;    }    struct aes_aad aes_aad;//aes GCM附加验证数据    if (memcpy_s(aes_aad.aad, sizeof(aes_aad.aad), sts_client->peer_challenge.challenge, sts_client->peer_challenge.length) != EOK) {//将对端challenge值拷贝到aes_aad FREE(out_auth_data.val); return memory_copy_error(__func__, __LINE__);    }    aes_aad.length = sts_client->peer_challenge.length;//获取长度//定义明文缓冲区,信息为签名数据    struct uint8_buff plain = {request_sign.signature, request_sign.length, request_sign.length};//用会话密钥对该明文进行aes_gcm加密,输出密文保存在auth_data中    ret = aes_gcm_encrypt((struct var_buffer *)&sts_client->session_key, &plain, &aes_aad, &out_auth_data);    if (ret != HC_OK) {//加密失败 FREE(out_auth_data.val); LOGE("Object %u aes_gcm_encrypt failed, error code is %d", sts_client_sn(sts_client), ret); return HC_ENCRYPT_FAILED;    }//将加密后的auth_data拷贝到待发送的响应消息体中    if (memcpy_s(send->auth_data.auth_data, sizeof(send->auth_data.auth_data), out_auth_data.val, out_auth_data.length) != EOK) { FREE(out_auth_data.val); return memory_copy_error(__func__, __LINE__);    }    send->auth_data.length = out_auth_data.length;//赋值加密认证数据长度    FREE(out_auth_data.val);    return HC_OK;}/*函数功能:验证签名数据,即验证对端身份函数参数:    handle:hichain子对象函数返回值:    ok:0    not ok:error num*/static int32_t verify_data(void *handle){    struct signature signature = { 0, {0} };//定义签名    int32_t ret = init_signature(handle, &signature);//初始化签名数据,解密对端认证数据作为签名数据    if (ret != HC_OK) { return ret;    }    struct uint8_buff message;//定义消息缓冲区    (void)memset_s(&message, sizeof(message), 0, sizeof(message));//清空该消息缓冲区//生成本端的签名消息:{服务端公钥、服务端认证id、客户端公钥、客户端认证id}    ret = generate_sign_message(handle, &message);    if (ret != HC_OK) { return ret;    }    ret = verify_response_data(handle, &message, &signature);//验证响应数据是否正确,即验证对端身份    FREE(message.val);//释放签名消息缓冲区    message.val = NULL;    if (ret != HC_OK) { return ret;    }    return HC_OK;}/*函数功能:初始化签名数据,解密对端认证数据作为签名数据函数参数:    handle:sts_client对象    signature:输出参数,签名函数返回值:    成功:0    失败:error num*/static int32_t init_signature(void *handle, struct signature *signature){    struct sts_client *sts_client = (struct sts_client *)handle;//接收sts客户端对象    struct aes_aad aes_aad;//aes GCM附加验证数据    if (memcpy_s(aes_aad.aad, sizeof(aes_aad.aad), sts_client->my_challenge.challenge,   sts_client->my_challenge.length) != EOK) {//将本端challenge值拷贝到aes_aad return memory_copy_error(__func__, __LINE__);    }    aes_aad.length = sts_client->my_challenge.length;//获取长度    struct uint8_buff out_plain = { 0, 0, 0 };//定义明文输出缓冲区,用于保存解密后的数据    out_plain.val = (uint8_t *)MALLOC(sts_client->peer_auth_data.length);//为该缓冲区申请空间    if (out_plain.val == NULL) { LOGE("Malloc peer_auth_data failed"); return HC_MALLOC_FAILED;    }    (void)memset_s(out_plain.val, sts_client->peer_auth_data.length, 0, sts_client->peer_auth_data.length);//清空该空间    out_plain.size = sts_client->peer_auth_data.length;//缓冲区大小为对端认证数据长度//定义一个认证数据缓冲区保存对端发来的auth_data    struct uint8_buff auth_data = {sts_client->peer_auth_data.auth_data, sts_client->peer_auth_data.length,sts_client->peer_auth_data.length};//利用会话密钥对对端auth_data进行解密,解密后的数据保存在out_plain    int32_t ret = aes_gcm_decrypt((struct var_buffer *)&sts_client->session_key, &auth_data, &aes_aad, &out_plain);    if (ret != HC_OK) { FREE(out_plain.val); LOGE("Object %u aes_gcm_decrypt failed, error code is %d", sts_client_sn(sts_client), ret); return HC_DECRYPT_FAILED;//解密失败返回错误码    }    if (memcpy_s(signature->signature, sizeof(signature->signature), out_plain.val, out_plain.length) != EOK) {//将解密后的auth_data拷贝给signature签名 FREE(out_plain.val); return memory_copy_error(__func__, __LINE__);    }    signature->length = out_plain.length;    FREE(out_plain.val);    return HC_OK;}/*函数功能:生成签名消息:{服务端公钥、服务端认证id、客户端公钥、客户端认证id}函数参数:    handle:sts_client对象    message:输出参数,签名消息缓冲区函数返回值:    成功:0    失败:error num*/static int32_t generate_sign_message(void *handle, struct uint8_buff *message){    DBG_OUT("Called generate sign message");    check_ptr_return_val(handle, HC_INPUT_ERROR);//检查参数有效性    check_ptr_return_val(message, HC_INPUT_ERROR);    struct sts_client *sts_client = (struct sts_client *)handle;//接收sts客户端对象//服务端公钥、服务端认证id、客户端公钥、客户端认证id长度之和    int len = sts_client->peer_public_key.length + sts_client->peer_id.length +sts_client->self_public_key.length + sts_client->self_id.length;    uint8_t *info = (uint8_t *)MALLOC(len);//申请len长度的缓冲区info    if (info == NULL) { LOGE("Malloc info failed"); return HC_MALLOC_FAILED;    }    int32_t pos = 0;    //将服务端公钥、服务端认证id、客户端公钥、客户端认证id按顺序拷贝到info缓冲区中    (void)memcpy_s(info + pos, len - pos, sts_client->peer_public_key.stpk, sts_client->peer_public_key.length);    pos += sts_client->peer_public_key.length;    (void)memcpy_s(info + pos, len - pos, sts_client->peer_id.auth_id, sts_client->peer_id.length);    pos += sts_client->peer_id.length;    (void)memcpy_s(info + pos, len - pos, sts_client->self_public_key.stpk, sts_client->self_public_key.length);    pos += sts_client->self_public_key.length;    (void)memcpy_s(info + pos, len - pos, sts_client->self_id.auth_id, sts_client->self_id.length);    //即 info = {服务端公钥、服务端认证id、客户端公钥、客户端认证id}    message->val = info;//将上述内容赋给签名消息缓冲区    message->length = len;    message->size = len;    return HC_OK;}/*函数功能:验证响应数据函数参数:    handle:sts_client对象    message:待验证的消息    signature:对比签名函数返回值:    ok:0    not ok:error num*/static int32_t verify_response_data(void *handle, const struct uint8_buff *message, struct signature *signature){    DBG_OUT("Called verify request data");    check_ptr_return_val(handle, HC_INPUT_ERROR);//检查参数有效性    check_ptr_return_val(message, HC_INPUT_ERROR);    check_ptr_return_val(signature, HC_INPUT_ERROR);    struct sts_client *sts_client = (struct sts_client *)handle;//接收sts客户端对象    struct hichain *hichain_handle = sts_client->hichain_handle;//获取hichain实例    enum huks_key_alias_type alias_type;//密钥别名类型    if (hichain_handle->type == HC_CENTRE) {//根据hc类型决定密钥别名(密钥对)类型 if (sts_client->peer_user_type == HC_USER_TYPE_CONTROLLER) { /* center(as phone identity) -> phone */     alias_type = KEY_ALIAS_LT_KEY_PAIR; } else { /* center -> accessory */     alias_type = KEY_ALIAS_ACCESSOR_PK; }    } else { /* accessory -> center/phone */ alias_type = KEY_ALIAS_CONTROLLER_PK;    }//利用会话标识符的HC包名称和HC服务类型通过sha256哈希算法计算出哈希值,作为服务id    struct service_id service_id = generate_service_id(sts_client->identity);    if (service_id.length == 0) { LOGE("Generate service id failed"); return HC_GEN_SERVICE_ID_FAILED;    }    struct hc_key_alias key_alias = generate_key_alias(&service_id, &sts_client->peer_id, alias_type);//根据服务id和对端认证id生成密钥别名    if (key_alias.length == 0) { LOGE("Generate key alias failed"); return HC_GEN_ALIAS_FAILED;    }    //通过ED25519长期公钥验证签名是否正确(用对端公钥解密)    int32_t ret = verify(&key_alias, sts_client->peer_user_type, message, signature);    if (ret != HC_OK) { LOGE("Object %u verify failed, error code is %d", sts_client_sn(sts_client), ret); return HC_VERIFY_PROOF_FAILED;    }    return HC_OK;}/*函数功能:生成sts请求签名函数参数:    handle:sts_client对象    signature:签名数据函数返回值:    成功:0    失败:error num*/static int32_t generate_sts_request_sign(void *handle, struct signature *signature){    struct sts_client *sts_client = (struct sts_client *)handle;//接收sts客户端对象//客户端公钥、客户端认证id、服务端公钥、服务端认证id 长度之和    int32_t len = sts_client->self_public_key.length + sts_client->self_id.length +    sts_client->peer_public_key.length + sts_client->peer_id.length;    uint8_t *info = (uint8_t *)MALLOC(len);//申请len长度的缓冲区info    if (info == NULL) { LOGE("Malloc info failed"); return HC_MALLOC_FAILED;    }    int32_t pos = 0;    //将客户端公钥、客户端认证id、服务端公钥、服务端认证id按顺序拷贝到info2缓冲区中    (void)memcpy_s(info + pos, len - pos, sts_client->self_public_key.stpk, sts_client->self_public_key.length);    pos += sts_client->self_public_key.length;    (void)memcpy_s(info + pos, len - pos, sts_client->self_id.auth_id, sts_client->self_id.length);    pos += sts_client->self_id.length;    (void)memcpy_s(info + pos, len - pos, sts_client->peer_public_key.stpk, sts_client->peer_public_key.length);    pos += sts_client->peer_public_key.length;    (void)memcpy_s(info + pos, len - pos, sts_client->peer_id.auth_id, sts_client->peer_id.length);    //即 info = {客户端公钥、客户端认证id、服务端公钥、服务端认证id}    struct service_id service_id = generate_service_id(sts_client->identity);//利用会话标识符的HC包名称和HC服务类型通过sha256哈希算法计算出哈希值,作为服务id    if (service_id.length == 0) { LOGE("Generate service id failed"); FREE(info); return HC_GEN_SERVICE_ID_FAILED;    }#if (defined(_SUPPORT_SEC_CLONE_) || defined(_SUPPORT_SEC_CLONE_SERVER_))    struct hc_key_alias key_alias = generate_key_alias(&service_id, &sts_client->self_id, KEY_ALIAS_LT_KEY_PAIR);#else//通过服务id和认证id生成密钥别名    struct hc_key_alias key_alias = generate_key_alias(&service_id, &sts_client->self_id, KEY_ALIAS_ACCESSOR_PK);#endif    if (key_alias.length == 0) { LOGE("Generate key alias failed"); FREE(info); return HC_GEN_ALIAS_FAILED;//生成别名失败    }//定义签名消息缓冲区并初始化为 {客户端公钥、客户端认证id、服务端公钥、服务端认证id}    struct uint8_buff sign_message = { info, len, len };//将{客户端公钥、客户端认证id、服务端公钥、服务端认证id}信息利用ED25519算法进行私钥签名,输出结果保存在signature中    int32_t ret = sign(&key_alias, &sign_message, signature);    if (ret != HC_OK) { LOGE("Object %u sign failed, error code is %d", sts_client_sn(sts_client), ret); FREE(info); return HC_SIGN_EXCHANGE_FAILED;    }    FREE(info);    return ret;}
6. 最后执行make_auth_ack_request函数,构造json格式的认证ack请求消息。
/*函数功能:构造json格式的认证ack请求消息函数参数:    data:待发送数据函数返回值:    成功:json格式的字符串    失败:NULL*/char *make_auth_ack_request(void *data){    struct sts_end_request_data *auth_ack_request = data;    /* authdata */    uint8_t *tmp_data_hex = raw_byte_to_hex_string(auth_ack_request->auth_data.auth_data,  auth_ack_request->auth_data.length);//将原始的authdata字节数据转换为十六进制的字符串    if (tmp_data_hex == NULL) { return NULL;    }    char *ret_str = (char *)MALLOC(RET_STR_LENGTH);//为json字符串申请空间    if (ret_str == NULL) { FREE(tmp_data_hex); return NULL;    }    (void)memset_s(ret_str, RET_STR_LENGTH, 0, RET_STR_LENGTH);//清空该空间    if (snprintf_s(ret_str, RET_STR_LENGTH, RET_STR_LENGTH - 1, "{\"%s\":%d,\"%s\":%d,\"%s\":{\"%s\":\"%s\"}}", FIELD_AUTH_FORM, AUTH_FORM, FIELD_MESSAGE, AUTH_ACK_REQUEST, FIELD_PAYLOAD, FIELD_AUTH_DATA, tmp_data_hex) < 0) { LOGE("String generate failed"); FREE(ret_str); ret_str = NULL;    }//生成json格式的请求消息    FREE(tmp_data_hex);    return ret_str;}

三、小结

经过分析,客户端发起的ack请求消息格式如下:

{    "authForm":0,    "message":0x0012,    //消息码:AUTH_ACK_REQUEST    "payload":    { "authData":"十六进制格式的字符串"//加密的签名消息,ED25519算法进行私钥签名    }}

这个过程主要是对来自服务端的签名消息进行一个身份验证,然后再发送自身的签名消息给到服务端。

美国云服务器