Swin Transformer v2实战:使用Swin Transformer v2实现图像分类(一)
Swin Transformer V2实战
- 摘要
- 安装包
-
- 安装timm
- 数据增强Cutout和Mixup
- EMA
- 项目结构
- 计算mean和std
- 生成数据集
摘要
Swin Transformer v2解决了大型视觉模型训练和应用中的三个主要问题,包括训练不稳定性、预训练和微调之间的分辨率差距以及对标记数据的渴望。提出了三种主要技术:
- 1)残差后范数方法结合余弦注意提高训练稳定性;
-
- 一种对数空间连续位置偏差方法,可有效地将使用低分辨率图像预训练的模型转移到具有高分辨率输入的下游任务;
-
- 一种自我监督的预训练方法 SimMIM,以减少对大量标记图像的需求。
- 一种自我监督的预训练方法 SimMIM,以减少对大量标记图像的需求。
我这篇文章主要讲解如何使用Swin Transformer V2完成图像分类任务,接下来我们一起完成项目的实战。本例选用的模型是swinv2_tiny_windows8_256,在植物幼苗数据集上实现了96.9%的准确率。
通过这篇文章能让你学到:
- 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
- 如何实现Swin Transformer V2模型实现训练?
- 如何使用pytorch自带混合精度?
- 如何使用梯度裁剪防止梯度爆炸?
- 如何使用DP多显卡训练?
- 如何绘制loss和acc曲线?
- 如何生成val的测评报告?
- 如何编写测试脚本测试测试集?
- 如何使用余弦退火策略调整学习率?
- 如何使用AverageMeter类统计ACC和loss等自定义变量?
- 如何理解和统计ACC1和ACC5?
- 如何使用EMA?
安装包
安装timm
使用pip就行,命令:
pip install timm
数据增强Cutout和Mixup
为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:
pip install torchtoolbox
Cutout实现,在transforms中。
from torchtoolbox.transform import Cutout# 数据预处理transform = transforms.Compose([ transforms.Resize((224, 224)), Cutout(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
需要导入包:from timm.data.mixup import Mixup,
定义Mixup,和SoftTargetCrossEntropy
mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=12) criterion_train = SoftTargetCrossEntropy()
参数详解:
mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。
cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。
cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。
如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0
prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。
switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。
mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。
correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正
label_smoothing (float):将标签平滑应用于混合目标张量。
num_classes (int): 目标的类数。
EMA
EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:
class EMA(): def __init__(self, model, decay): self.model = model self.decay = decay self.shadow = {} self.backup = {} def register(self): for name, param in self.model.named_parameters(): if param.requires_grad: self.shadow[name] = param.data.clone() def update(self): for name, param in self.model.named_parameters(): if param.requires_grad: assert name in self.shadow new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name] self.shadow[name] = new_average.clone() def apply_shadow(self): for name, param in self.model.named_parameters(): if param.requires_grad: assert name in self.shadow self.backup[name] = param.data param.data = self.shadow[name] def restore(self): for name, param in self.model.named_parameters(): if param.requires_grad: assert name in self.backup param.data = self.backup[name] self.backup = {}
加入到模型中。
# 初始化ema = EMA(model, 0.999)ema.register()# 训练过程中,更新完参数后,同步update shadow weightsdef train(): optimizer.step() ema.update()# eval前,apply shadow weights;eval之后,恢复原来模型的参数def evaluate(): ema.apply_shadow() # evaluate ema.restore()
这个ema最好放在微调的时候使用,否则验证集不上分,或者上分很慢。
项目结构
SwinV2_demo├─data1│ ├─Black-grass│ ├─Charlock│ ├─Cleavers│ ├─Common Chickweed│ ├─Common wheat│ ├─Fat Hen│ ├─Loose Silky-bent│ ├─Maize│ ├─Scentless Mayweed│ ├─Shepherds Purse│ ├─Small-flowered Cranesbill│ └─Sugar beet├─mean_std.py├─makedata.py├─ema.py├─train.py└─test.py
mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
ema.py:EMA脚本
为了能在DP方式中使用混合精度,还需要在模型的forward函数前增加@autocast()。
计算mean和std
为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:
from torchvision.datasets import ImageFolderimport torchfrom torchvision import transformsdef get_mean_and_std(train_data): train_loader = torch.utils.data.DataLoader( train_data, batch_size=1, shuffle=False, num_workers=0, pin_memory=True) mean = torch.zeros(3) std = torch.zeros(3) for X, _ in train_loader: for d in range(3): mean[d] += X[:, d, :, :].mean() std[d] += X[:, d, :, :].std() mean.div_(len(train_data)) std.div_(len(train_data)) return list(mean.numpy()), list(std.numpy())if __name__ == '__main__': train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor()) print(get_mean_and_std(train_dataset))
数据集结构:
运行结果:
([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])
把这个结果记录下来,后面要用!
生成数据集
我们整理还的图像分类的数据集结构是这样的
data├─Black-grass├─Charlock├─Cleavers├─Common Chickweed├─Common wheat├─Fat Hen├─Loose Silky-bent├─Maize├─Scentless Mayweed├─Shepherds Purse├─Small-flowered Cranesbill└─Sugar beet
pytorch和keras默认加载方式是ImageNet数据集格式,格式是
├─data│ ├─val│ │ ├─Black-grass│ │ ├─Charlock│ │ ├─Cleavers│ │ ├─Common Chickweed│ │ ├─Common wheat│ │ ├─Fat Hen│ │ ├─Loose Silky-bent│ │ ├─Maize│ │ ├─Scentless Mayweed│ │ ├─Shepherds Purse│ │ ├─Small-flowered Cranesbill│ │ └─Sugar beet│ └─train│ ├─Black-grass│ ├─Charlock│ ├─Cleavers│ ├─Common Chickweed│ ├─Common wheat│ ├─Fat Hen│ ├─Loose Silky-bent│ ├─Maize│ ├─Scentless Mayweed│ ├─Shepherds Purse│ ├─Small-flowered Cranesbill│ └─Sugar beet
新增格式转化脚本makedata.py,插入代码:
import globimport osimport shutilimage_list=glob.glob('data1/*/*.png')print(image_list)file_dir='data'if os.path.exists(file_dir): print('true') #os.rmdir(file_dir) shutil.rmtree(file_dir)#删除再建立 os.makedirs(file_dir)else: os.makedirs(file_dir)from sklearn.model_selection import train_test_splittrainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)train_dir='train'val_dir='val'train_root=os.path.join(file_dir,train_dir)val_root=os.path.join(file_dir,val_dir)for file in trainval_files: file_class=file.replace("\\","/").split('/')[-2] file_name=file.replace("\\","/").split('/')[-1] file_class=os.path.join(train_root,file_class) if not os.path.isdir(file_class): os.makedirs(file_class) shutil.copy(file, file_class + '/' + file_name)for file in val_files: file_class=file.replace("\\","/").split('/')[-2] file_name=file.replace("\\","/").split('/')[-1] file_class=os.path.join(val_root,file_class) if not os.path.isdir(file_class): os.makedirs(file_class) shutil.copy(file, file_class + '/' + file_name)
完成上面的内容就可以开启训练和测试了。