> 文档中心 > ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

最近一周都在学习ElasticSearch,之前也零零散散的学过一点,这次下定决心花一周的时间将之前学的知识总结一下,顺便接着再往下学习,所以写篇博客总结一下最近一周的成果,本篇属于ElasticSearch的基础篇,后面会继续深入学习。也希望这篇拙作可以帮助到诸位大佬,如有不足之处,还望诸佬不吝赐教,倾囊相授。
ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结

      • ElasticSearch概述
      • ES和Solr的差别
        • ElasticSearch简介
        • Solr简介
      • ElasticSearch安装
      • ES核心概念
        • IK分词器
        • Rest风格说明
        • 关于文档的基本操作(重点)
        • 集成SpringBoot
      • 实战案例

ElasticSearch概述

ElasticSearch、简称ES,ES是一个开源的高扩展分布式全文检索引擎,它可以近乎实时的存储,检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别(大数据时代)的数据,ES也使用Java开发使用Lucene作为其核心来实现所有索引和搜索的功能,但是他的目的是通过简单的RestFul API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

ElasticSearch学习总结(基础篇,可学习,可复习)

ES和Solr的差别

ElasticSearch简介

ElasticSearch是一个实时分布式搜索和分析引擎,它让你以前所未有的速度处理大数据成为可能

它用于全文搜索、结构化、分析以及将这三者混合使用

维基百科使用ElasticSearch提供全文搜索并高亮关键字,以及输入实时搜索(search-asyou-type)和搜索纠错等搜索建议功能……

ElasticSearch是一个基于Apache Lucene的开源搜索引擎,无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进,性能最好的,功能最全的搜索引擎库

但是,Lucene只是一个库,想要使用它,你必须使用java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的

ElasticSearch也使用java开发并使用Lucene作为其核心来实现所有索引和搜索功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单!

Solr简介

Solr是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器,Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展、并对索引、搜索性能进行了优化!

Solr可以独立运行,运行在Jetty、Tomcat等这些Servlet容器中,Solr索引的实现方法很简单,==用POST方法向Solr服务器发送一个描述Field及其内容的XML文档,Solr根据xml文档添加,删除,更新索引,==Solr搜索只需要发送HTTP GET请求,然后对Solr返回xml、json等格式的查询结果进行解析,组织页面布局,Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

Solr是基于Lucene开发企业级搜索服务器,实际上就是封装Lucene

Solr是一个独立的企业级搜索应用服务器,它对外提供类似与web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的文件,生成索引,也可以通过提交查找请求,并得到返回结果!

ElasticSearch 和 Solr

  • 当单纯的对已有数据进行搜索时,Solr更快!
  • 当实时建立索引时,Solr会产生IO阻塞,查询性能较差,ElasticSearch具有明显的优势
  • 随着数据量的增加,Solr的搜索效率会变得更低,而ElasticSearch却没有明显的的变化

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch vs Solr

  1. ES基本是开箱即用(解压就可以用),非常简单,Solr安装稍微复杂一点
  2. Solr利用Zookeeper进行分布式管理。而ElasticSearch自身带有分布式协调管理功能
  3. Solr支持更多格式的数据,比如JSON、XML、CSV,而ElasticSearch仅支持json文件格式
  4. Solr官方提供的功能更多,而ElasticSearch本身更注重核心功能,高级功能多有第三方插件提供,例如,图形化界面,Kibana友好支撑
  5. Solr查询快,但更新索引时慢(即插入删除慢),用于电商等查询多的应用;
    • ES建立索引快(即查询慢),即实时性查询快,用于facebook新浪等搜索
    • Solr是传统搜索应用的有利解决方案,但ElasticSearch更适用于新兴的实时搜索应用

​ 6.Solr比较成熟,有一个更大,更成熟的用户,开发和贡献者社区,而ElasticSearch相对开发维护者少,更新太快,学习成本较高

ElasticSearch安装

Java开发,ElasticSearch的版本和我们之后对应的java的核心jar包,版本对应,java环境正常!

ElasticSearch学习总结(基础篇,可学习,可复习)

2、熟悉目录

bin  启动文件config 配置文件log4j2 日志配置文件jvm.options java虚拟机相关的配置ElasticSearch ElasticSearch配置文件  默认端口9200  !跨域lib 相关jar包modules 功能模块plugins 插件

3、启动 ,访问9200 elasticsearch.bat

ElasticSearch学习总结(基础篇,可学习,可复习)

4、访问测试

ElasticSearch学习总结(基础篇,可学习,可复习)

安装可视化界面 es head的插件

1、下载地址https://github.com/mobz/elasticsearch-head

2、启动

npm install 安装依赖npm run start 启动

3、连接测试发现,存在跨域问题:配置es

http.cors.enabled: truehttp.cors.allow-origin: "*"

4、重启es ,再次连接

ElasticSearch学习总结(基础篇,可学习,可复习)

初学,可以把es当做一个数据库!(可以建立索引(库),文档(库中的数据))

这个head我们就把它当做数据展示工具!我们后面所有的查询,Kibana

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

安装Kibana

Kibana是一个针对ElasticSearch的开源分析及可视化平台,用来搜索,查看交互存储在ElasticSearch索引中的数据,使用Kibana,可以通过各种图表进行高级数据分析及展示,Kibana让海量数据更容易理解,基于浏览器的用户界面可以快速创建仪表板实时显示ElasticSearch查询动态,设置Kibana非常简单,无序编码或者额外的基础架构,几分钟内就可以完成Kibana安装并启动ElasticSearch索引检测。

官网:https://www.elastic.co/cn/kibana

Kibana版本要和ES版本一致

启动测试

1、目录结构

ElasticSearch学习总结(基础篇,可学习,可复习)

2、启动

ElasticSearch学习总结(基础篇,可学习,可复习)

3、开发工具!(POST、curl、head、谷歌浏览器插件)

ElasticSearch学习总结(基础篇,可学习,可复习)

之后的所有的操作都在这里编写

4、汉化!自己修改Kibana.yml ! zh-CN

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

ES核心概念

概述

集群、节点、索引、类型、文档、分片、映射是什么?

elasticSearch是面向文档,关系型数据库 和 ElasticSearch 客观的对比!一切都是JSON

Relational DB ElasticSearch
数据库(database) 索引(indices)
表(tables) types
行(rows) documents
字段(columns) fields

elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多个文档(行),每个文档重女又包含多个字段(列)

物理设计:

ElasticSearch在后台把每个索引划分为多个分片,每分分片可以在集群中的不同服务器间迁移

逻辑设计:

一个索引类型中,包含多个文档,比如说文档1,文档2,当我们索引一篇文档时,可以通过这样的一个顺序找到它:索引–>类型–>文档ID。通过这个组合我们就能索引到某个具体的文档,注意:ID不必是整数,实际上它是个字符串

文档

之前说ElasticSearch是面向文档的,那么就意味着索引和搜索数据的最小单位是文档,ElasticSearch,文档有几个重要属性:

  • 自我包含,一篇文档同时包含字段和对应的值,也就是同时包含key:value
  • 可以是层次型的,一个文档中包含自文档,复杂的逻辑实体就是这么来的
  • 灵活的结构,文档不依赖预先定义的模式,我们知道关系型数据库中,要提前定义字段才能使用,在ElasticSearch中,对于字段是非常灵活的,有时候,我们可以忽略改字段,或者动态的添加一个新的字段
  • 尽管我们可以随意的新增或者忽略某个字段,但是,每个字段的类型非常重要,比如一个年龄字段类型,可以是字符串也可以是整型,因为ElasticSearch会保存字段和类型之间的映射及其他的设置,这种映射具体到每个映射的每种类型,这也是为什么在ElasticSearch中,类型有时候也称为映射类型。

类型

ElasticSearch学习总结(基础篇,可学习,可复习)

索引(就是一个数据库)

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

倒排索引

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

IK分词器

什么是IK分词器

分词:即把一段中文或者别的划分成一个个的关键字,我们把搜索时会把自己的信息进行分词,会把数据库中或索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词。比如:“我爱狂神”会被分为:”我“,”爱“,”狂“,”神“,这显然是不符合要求的,所以我们需要安装中文分词器IK来解决这个问题

IK提供了两个分词算法:ik_smart和ik_max_word,其中ik_smart为最少切分,ik_max_word为最细粒度划分

下载安装

1、https://github.com/medcl/elasticsearch-analysis-ik

2、下载完毕之后,直接放在ElasticSearch插件中即可!

3、重启ElasticSearch

测试分词器效果

ik__smart

ElasticSearch学习总结(基础篇,可学习,可复习)

ik_max_word

ElasticSearch学习总结(基础篇,可学习,可复习)

ik分词器增加自己的配置!

ElasticSearch学习总结(基础篇,可学习,可复习)

保存后重启ES!

ElasticSearch学习总结(基础篇,可学习,可复习)

Rest风格说明

一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件,它主要用于客户端和服务端交互类的软件,基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。

基本的Rest命令说明:

method url地址 描述
PUT localhost:9200/索引名称/类型名称/文档id 创建文档(指定文档id)
POST localhost:9200/索引名称/类型名称 创建文档(随机文档id)
POST localhost:9200/索引名称/类型名称/文档id/_update 修改文档
DELETE localhost:9200/索引名称/类型名称/文档id 删除文档
GET localhost:9200/索引名称/类型名称/文档id 查询文档通过文档id
POST localhost:9200/索引名称/类型名称/_search 查询所有数据

基础测试

1、创建一个索引

PUT /索引名/类型名/文档id{请求体}

2、向索引中PUT值

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

3、name这个字段用不用指定类型呢,毕竟我们关系型数据库,是需要指定类型的

  • 字符串类型

    text 、keyword

  • 数值类型

    long、integer、short、byte、double、float、half、float、scaled

  • 日期类型

    date

  • te布尔值类型

    boolean

  • 二进制类型

    binary

  • 等等……

4、指定字段的类型(创建规则)

ElasticSearch学习总结(基础篇,可学习,可复习)

获取规则,可以通过get请求获取具体的信息

GET test2

测试

ElasticSearch学习总结(基础篇,可学习,可复习)

如果自己的文档字段没有自定,那么es会给我们配置默认字段类型!

扩展:通过命令ElasticSearch索引情况! 通过get _cat/ 可以获得ElasticSearch的很多信息

ElasticSearch学习总结(基础篇,可学习,可复习)

修改索引 提交还是使用PUT

曾经的方法:

ElasticSearch学习总结(基础篇,可学习,可复习)

最新办法

ElasticSearch学习总结(基础篇,可学习,可复习)

删除索引 通过DELETE命令实现删除,根据你的请求来判断是删除索引还是删除文档记录!

ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)

关于文档的基本操作(重点)

基本操作

1、添加一条数据

PUT /wumao/user/1{  "name":"wumao",  "age":21,  "desc":"一顿操作猛如虎,一看工资2500",  "tags":["技术宅","无聊者"]}

ElasticSearch学习总结(基础篇,可学习,可复习)

2、获取数据 GET

ElasticSearch学习总结(基础篇,可学习,可复习)

3、更新操作 POST _update推荐使用这种更新方式

ElasticSearch学习总结(基础篇,可学习,可复习)

简单的搜索

GET wumao/user/1

简单的条件查询 ,可以根据默认的映射规则,产生基本的查询!

ElasticSearch学习总结(基础篇,可学习,可复习)

复杂操作 搜索 select(排序、分页、高亮、精准查询!)

ElasticSearch学习总结(基础篇,可学习,可复习)
ElasticSearch学习总结(基础篇,可学习,可复习)

输出结果,不想要那么多结果!select name,desc . . . .

ElasticSearch学习总结(基础篇,可学习,可复习)

之后使用Java操作es,所有的方法和对象就是这里面的key!

排序

ElasticSearch学习总结(基础篇,可学习,可复习)

分页

ElasticSearch学习总结(基础篇,可学习,可复习)

数据下标还是从0开始的,和学的所有数据结构是一样的!

/search/{current}/{pageSize}

布尔值查询

must (and),所有的条件都要符合 where id = 1 and name =xxx

ElasticSearch学习总结(基础篇,可学习,可复习)

should( or ),所有的条件都要符合 where id = 1 orname =xxx

ElasticSearch学习总结(基础篇,可学习,可复习)

must_not(not)

ElasticSearch学习总结(基础篇,可学习,可复习)

过滤器filter

ElasticSearch学习总结(基础篇,可学习,可复习)

 gt  >  大于 gte >= 大于等于 lt  <  小于 lte <= 小于等于

ElasticSearch学习总结(基础篇,可学习,可复习)

匹配多个条件

ElasticSearch学习总结(基础篇,可学习,可复习)

精确查询!

trem 查询是直接通过倒排索引指定的词条进行精确的查找的!

关于分词:

  • term,直接查询精确地

  • match,会使用分词器解析(先分析文档,通过分析的文档进行查询)

    两个类型 text keyword

    ElasticSearch学习总结(基础篇,可学习,可复习)

ElasticSearch学习总结(基础篇,可学习,可复习)ElasticSearch学习总结(基础篇,可学习,可复习)

多个值精确匹配

ElasticSearch学习总结(基础篇,可学习,可复习)

高亮查询!

ElasticSearch学习总结(基础篇,可学习,可复习)
ElasticSearch学习总结(基础篇,可学习,可复习)

  • 匹配
  • 按条件匹配
  • 精确匹配
  • 区间范围匹配
  • 匹配字段过滤
  • 多条件查询
  • 高亮查询

ElasticSearch学习总结(基础篇,可学习,可复习)

集成SpringBoot

找官方文档!

ElasticSearch学习总结(基础篇,可学习,可复习)
ElasticSearch学习总结(基础篇,可学习,可复习)

https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.12/index.html

1、找到原生的依赖

<dependency>    <groupId>org.elasticsearch.client</groupId>    <artifactId>elasticsearch-rest-high-level-client</artifactId>    <version>7.13.2</version></dependency>

2、找对象

ElasticSearch学习总结(基础篇,可学习,可复习)

3、分析这个类中的方法

配置基本的项目

问题:创建项目默认的elasticsearch的默认版本是7.12.1,版本和本地不一致!

ElasticSearch学习总结(基础篇,可学习,可复习)
需要自己定义版本的依赖

ElasticSearch学习总结(基础篇,可学习,可复习)

分析源码

ElasticSearch学习总结(基础篇,可学习,可复习)

虽然导入了三个类,静态内部类,核心类只有一个

/ * Elasticsearch rest client configurations. * * @author Stephane Nicoll */class ElasticsearchRestClientConfigurations {@Configuration(proxyBeanMethods = false)@ConditionalOnMissingBean(RestClientBuilder.class)static class RestClientBuilderConfiguration {@BeanRestClientBuilderCustomizer defaultRestClientBuilderCustomizer(ElasticsearchRestClientProperties properties) {return new DefaultRestClientBuilderCustomizer(properties);}//第一个bean  RestClientBuilder@BeanRestClientBuilder elasticsearchRestClientBuilder(ElasticsearchRestClientProperties properties,ObjectProvider<RestClientBuilderCustomizer> builderCustomizers) {HttpHost[] hosts = properties.getUris().stream().map(this::createHttpHost).toArray(HttpHost[]::new);RestClientBuilder builder = RestClient.builder(hosts);builder.setHttpClientConfigCallback((httpClientBuilder) -> {builderCustomizers.orderedStream().forEach((customizer) -> customizer.customize(httpClientBuilder));return httpClientBuilder;});builder.setRequestConfigCallback((requestConfigBuilder) -> {builderCustomizers.orderedStream().forEach((customizer) -> customizer.customize(requestConfigBuilder));return requestConfigBuilder;});builderCustomizers.orderedStream().forEach((customizer) -> customizer.customize(builder));return builder;}private HttpHost createHttpHost(String uri) {try {return createHttpHost(URI.create(uri));}catch (IllegalArgumentException ex) {return HttpHost.create(uri);}}private HttpHost createHttpHost(URI uri) {if (!StringUtils.hasLength(uri.getUserInfo())) {return HttpHost.create(uri.toString());}try {return HttpHost.create(new URI(uri.getScheme(), null, uri.getHost(), uri.getPort(), uri.getPath(),uri.getQuery(), uri.getFragment()).toString());}catch (URISyntaxException ex) {throw new IllegalStateException(ex);}}}@Configuration(proxyBeanMethods = false)@ConditionalOnMissingBean(RestHighLevelClient.class)static class RestHighLevelClientConfiguration { //第二个bean  RestHighLevelClient 高级客户端,后面项目会用到!@BeanRestHighLevelClient elasticsearchRestHighLevelClient(RestClientBuilder restClientBuilder) {return new RestHighLevelClient(restClientBuilder);}}@Configuration(proxyBeanMethods = false)@ConditionalOnClass(Sniffer.class)@ConditionalOnSingleCandidate(RestHighLevelClient.class)static class RestClientSnifferConfiguration {@Bean@ConditionalOnMissingBeanSniffer elasticsearchSniffer(RestHighLevelClient client, ElasticsearchRestClientProperties properties) {SnifferBuilder builder = Sniffer.builder(client.getLowLevelClient());PropertyMapper map = PropertyMapper.get().alwaysApplyingWhenNonNull();map.from(properties.getSniffer().getInterval()).asInt(Duration::toMillis).to(builder::setSniffIntervalMillis);map.from(properties.getSniffer().getDelayAfterFailure()).asInt(Duration::toMillis).to(builder::setSniffAfterFailureDelayMillis);return builder.build();}}static class DefaultRestClientBuilderCustomizer implements RestClientBuilderCustomizer {private static final PropertyMapper map = PropertyMapper.get();private final ElasticsearchRestClientProperties properties;DefaultRestClientBuilderCustomizer(ElasticsearchRestClientProperties properties) {this.properties = properties;}@Overridepublic void customize(RestClientBuilder builder) {}@Overridepublic void customize(HttpAsyncClientBuilder builder) {builder.setDefaultCredentialsProvider(new PropertiesCredentialsProvider(this.properties));}@Overridepublic void customize(RequestConfig.Builder builder) {map.from(this.properties::getConnectionTimeout).whenNonNull().asInt(Duration::toMillis).to(builder::setConnectTimeout);map.from(this.properties::getReadTimeout).whenNonNull().asInt(Duration::toMillis).to(builder::setSocketTimeout);}}private static class PropertiesCredentialsProvider extends BasicCredentialsProvider {PropertiesCredentialsProvider(ElasticsearchRestClientProperties properties) {if (StringUtils.hasText(properties.getUsername())) {Credentials credentials = new UsernamePasswordCredentials(properties.getUsername(),properties.getPassword());setCredentials(AuthScope.ANY, credentials);}properties.getUris().stream().map(this::toUri).filter(this::hasUserInfo).forEach(this::addUserInfoCredentials);}private URI toUri(String uri) {try {return URI.create(uri);}catch (IllegalArgumentException ex) {return null;}}private boolean hasUserInfo(URI uri) {return uri != null && StringUtils.hasLength(uri.getUserInfo());}private void addUserInfoCredentials(URI uri) {AuthScope authScope = new AuthScope(uri.getHost(), uri.getPort());Credentials credentials = createUserInfoCredentials(uri.getUserInfo());setCredentials(authScope, credentials);}private Credentials createUserInfoCredentials(String userInfo) {int delimiter = userInfo.indexOf(":");if (delimiter == -1) {return new UsernamePasswordCredentials(userInfo, null);}String username = userInfo.substring(0, delimiter);String password = userInfo.substring(delimiter + 1);return new UsernamePasswordCredentials(username, password);}}}

具体的API测试

1、创建索引

2、判断文档是否存在

3、删除索引

4、创建文档

5、CRUD文档

@SpringBootTestclass WumaoEsApiApplicationTests {    @Autowired    @Qualifier("restHighLevelClient")    private RestHighLevelClient client;    //测试创建索引 在java中所有的请求都是用Request  PUT wumao_index    @Test    public void testCreateIndex() throws IOException { //1、创建索引请求 CreateIndexRequest request = new CreateIndexRequest("wumao_index"); //2、客户端执行请求  IndicesClient,请求后获取响应 CreateIndexResponse createIndexResponse = client.indices()  .create(request, RequestOptions.DEFAULT); System.out.println(createIndexResponse);    }    //测试获取索引    @Test    void testExistsIndex() throws IOException { GetIndexRequest re = new GetIndexRequest("wumao_index"); boolean exists = client.indices().exists(re,RequestOptions.DEFAULT); System.out.println(exists);    }    //测试删除索引    @Test    void testDeleteIndex() throws IOException { DeleteIndexRequest request = new DeleteIndexRequest("wumao_index"); AcknowledgedResponse delete = client.indices().delete(request, RequestOptions.DEFAULT); System.out.println(delete);    }    //添加文档    @Test    void testAddDocument() throws IOException { //创建对象 User user = new User("五毛",3); //创建请求 IndexRequest request = new IndexRequest("wumao_index"); //设值一些规则 put /wumao_index/_doc/1 request.id("1"); request.timeout(TimeValue.timeValueSeconds(1)); request.timeout("1s"); //将我们的数据放入请求 json String string = JSON.toJSONString(user); request.source(string, XContentType.JSON); //客户端发送请求,获取响应的结果 IndexResponse index = client.index(request, RequestOptions.DEFAULT); System.out.println(index.toString()); System.out.println(index.status());//对应我们命令的返回状态    }    //获取文档    @Test    void testIsExists() throws IOException { //获取文档,判断是否存在 get/index/doc/1 GetRequest index = new GetRequest("wumao_index", "1"); //不获取返回的_source的上下文了 index.fetchSourceContext(new FetchSourceContext(false)); index.storedFields("_none_"); boolean exists = client.exists(index, RequestOptions.DEFAULT); System.out.println(exists);    }    //获取文档的信息    @Test    void testGetDocument() throws IOException { GetRequest index = new GetRequest("wumao_index", "1"); GetResponse fields = client.get(index, RequestOptions.DEFAULT); System.out.println(fields.getSourceAsString()); System.out.println(fields);    }    //更新文档记录    @Test    void testUpdateDocument() throws IOException { UpdateRequest index = new UpdateRequest("wumao_index", "1"); //设置超时时间 index.timeout(TimeValue.timeValueSeconds(1)); User user = new User("法外狂徒张三", 12); UpdateRequest doc = index.doc(JSON.toJSONString(user),XContentType.JSON); UpdateResponse update = client.update(index, RequestOptions.DEFAULT); System.out.println(update);    }    //删除文档记录    @Test    void testDeleteDocument() throws IOException { DeleteRequest request = new DeleteRequest("wumao_index", "1"); //设置请求过期时间 request.timeout("1s"); DeleteResponse delete = client.delete(request, RequestOptions.DEFAULT); System.out.println(delete.status());    }    //特殊的,真的项目一般都是批量插入数据    @Test    void testBulkRequest() throws IOException { BulkRequest bulkRequest = new BulkRequest(); bulkRequest.timeout("10s"); ArrayList<User> userList = new ArrayList<>(); userList.add(new User("wumao",3)); userList.add(new User("wumao1",23)); userList.add(new User("wumao2",21)); userList.add(new User("wumao3",12)); userList.add(new User("wumao4",13)); userList.add(new User("wumao5",23)); userList.add(new User("wumao6",33)); for (int i = 0; i < userList.size(); i++) {     bulkRequest.add(new IndexRequest("wumao_index")      .source(JSON.toJSONString(userList.get(i)),XContentType.JSON)     ); } BulkResponse bulk = client.bulk(bulkRequest, RequestOptions.DEFAULT); System.out.println(bulk.hasFailures());//是否失败!    }    //查询    // SearchRequest 搜索请求    // SearchSourceBuilder 条件构造    // HighlightBuilder 构建高亮    // TermQueryBuilder 精确查询    // MatchAllQueryBuilder 查询全部    // xxxxQueryBuilder 对应之前的那些命令    @Test    void testSearch() throws IOException { SearchRequest request = new SearchRequest("wumao_index"); //构建搜索条件 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); //查询条件,我么可以使用QueryBuilders 工具类来实现 //QueryBuilders.termQuery 精确查询 //QueryBuilders.matchAllQuery(); 匹配所有 MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery(); TermQueryBuilder termQuery = QueryBuilders.termQuery("name", "wumao");     //查询过期时间     sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));     request.source(sourceBuilder); SearchResponse search = client.search(request, RequestOptions.DEFAULT); System.out.println(JSON.toJSONString(search.getHits())); for (SearchHit hit : search.getHits().getHits()) {     System.out.println(hit.getSourceAsMap()); }    }    //批量创建文档    @Test    void testBulkDocument() throws IOException { BulkRequest bulkRequest = new BulkRequest(); //设置过期时间 bulkRequest.timeout("60s"); ArrayList<User> userList = new ArrayList<>(); userList.add(new User("qinfeng",3)); userList.add(new User("qinfeng1",3)); userList.add(new User("qinfeng2",3)); userList.add(new User("qinfeng3",3)); userList.add(new User("qinfeng4",3)); userList.add(new User("qinfeng5",3)); for (int i = 0; i < userList.size(); i++) {     bulkRequest.add(new IndexRequest("wumao_index")     .id(""+(i+1))      .source(JSON.toJSONString(userList.get(i)),XContentType.JSON)); } BulkResponse bulk = client.bulk(bulkRequest, RequestOptions.DEFAULT); System.out.println(bulk.hasFailures());//判断是否失败    }}

ElasticSearch学习总结(基础篇,可学习,可复习)

实战案例

  • 爬虫

数据问题 数据库中获取,消息队列获取

爬取数据(获取请求返回的页面信息,筛选出我们所需要的)

<dependency>    <groupId>org.jsoup</groupId>    <artifactId>jsoup</artifactId>    <version>1.14.2</version></dependency>
 public List<Content> parseJD(String keyWords) throws Exception { //获取请求  https://search.jd.com/Search?keyword=java String url = "https://search.jd.com/Search?keyword="+keyWords; //解析网页 (Jsoup返回的Document就是Document对象) Document document = Jsoup.parse(new URL(url), 30000); //所有在js中使用的方法,在这里都可以使用 Element element = document.getElementById("J_goodsList"); ArrayList<Content> list = new ArrayList<>(); //获取所有的li元素 Elements elements = element.getElementsByTag("li"); //这里的el就是每一个li标签 for (Element el : elements) {     //关于这种图片特别多的网站,都是延时加载的     String price = el.getElementsByClass("p-price").eq(0).text();     String title = el.getElementsByClass("p-name").eq(0).text();     Content content = new Content();     content.setTitle(title);     content.setPrice(price);     list.add(content); } return list;    }
  • 前后端分离

  • 搜索高亮

   //解析数据放入到es中    public Boolean parseContent(String keyWords) throws Exception { List<Content> contents = new HtmlParseUtil().parseJD(keyWords); //把查询到的数据放入到es中 BulkRequest request = new BulkRequest(); request.timeout("2m"); for (int i = 0; i < contents.size(); i++) {     System.out.println(JSON.toJSONString(contents.get(i)));     request.add(      new IndexRequest("jd_goods")      .source(JSON.toJSONString(contents.get(i)), XContentType.JSON)); } BulkResponse bulkResponse = restHighLevelClient.bulk(request, RequestOptions.DEFAULT); return !bulkResponse.hasFailures();    }
    //3.实现搜索高亮功能    public List<Map<String,Object>> searchHighlightPage(String keyword,int pageNO,int pageSize) throws IOException { if (pageNO <=1){     pageNO =1; } //条件搜索 SearchRequest searchRequest = new SearchRequest("jd_goods"); SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); //分页 sourceBuilder.from(pageNO); sourceBuilder.size(pageSize); //精准匹配 QueryBuilders.termQuery("title",keyword); sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS)); HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.field("title"); highlightBuilder.requireFieldMatch(false); //高亮显示一个title只显示一个高亮就可以 highlightBuilder.preTags(""); highlightBuilder.postTags(""); sourceBuilder.highlighter(highlightBuilder); //执行搜索 searchRequest.source(sourceBuilder); SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); //解析结果 ArrayList<Map<String,Object>> list = new ArrayList<>(); for (SearchHit hit : searchResponse.getHits()) {     //解析高亮字段     Map<String, HighlightField> highlightFields = hit.getHighlightFields();     HighlightField title = highlightFields.get("title");     Map<String, Object> sourceAsMap = hit.getSourceAsMap();//原来的结果     //解析高亮字段,将原来的字段换为我们高亮的字段即可!     if (title!=null){  Text[] fragments = title.fragments();  String n_title="";  for (Text text : fragments) {      n_title += text;  }  sourceAsMap.put("title",n_title); //高亮字段替换掉原来的内容即可!     }     list.add(sourceAsMap); } return list;    }

本篇到这里就结束了!后续还会继续更新ElasticSearch调优、ElasticSearch集群以及面试题相关的内容,
感谢诸佬的点赞和支持。
如有不足之处,还希望诸佬指出不足之处,加以修正。

再见了各位小伙伴!
ElasticSearch学习总结(基础篇,可学习,可复习)