LRU算法
一、LRU算法
LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 t,当须淘汰一个页面时,选择现有页面中其 t 值最大的,即最近最少使用的页面予以淘汰。
二、Java代码实现
public class LRUCache { class DLinkedNode { int key; int value; DLinkedNode prev; DLinkedNode next; public DLinkedNode() {} public DLinkedNode(int _key, int _value) {key = _key; value = _value;} } private Map<Integer, DLinkedNode> cache = new HashMap<Integer, DLinkedNode>(); private int size; private int capacity; private DLinkedNode head, tail; public LRUCache(int capacity) { this.size = 0; this.capacity = capacity; // 使用伪头部和伪尾部节点 head = new DLinkedNode(); tail = new DLinkedNode(); head.next = tail; tail.prev = head; } public int get(int key) { DLinkedNode node = cache.get(key); if (node == null) { return -1; } // 如果 key 存在,先通过哈希表定位,再移到头部 moveToHead(node); return node.value; } public void put(int key, int value) { DLinkedNode node = cache.get(key); if (node == null) { // 如果 key 不存在,创建一个新的节点 DLinkedNode newNode = new DLinkedNode(key, value); // 添加进哈希表 cache.put(key, newNode); // 添加至双向链表的头部 addToHead(newNode); ++size; if (size > capacity) { // 如果超出容量,删除双向链表的尾部节点 DLinkedNode tail = removeTail(); // 删除哈希表中对应的项 cache.remove(tail.key); --size; } } else { // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部 node.value = value; moveToHead(node); } } private void addToHead(DLinkedNode node) { node.prev = head; node.next = head.next; head.next.prev = node; head.next = node; } private void removeNode(DLinkedNode node) { node.prev.next = node.next; node.next.prev = node.prev; } private void moveToHead(DLinkedNode node) { removeNode(node); addToHead(node); } private DLinkedNode removeTail() { DLinkedNode res = tail.prev; removeNode(res); return res; }}