> 文档中心 > 决策树算法-人工智能

决策树算法-人工智能

上机任务 5. 决策树算法实验程序说明文档

一、运环境

作系统: Windows10

开发软件: Anaconda3

Python 本: Python 3 及以上

所需要的依赖包:无

二、操作步骤

在命令行或 Anaconda3 集成开发环境中运行程序 trees.py

  • 结果展示

 test.py

import treesimport treePlotter#fr=open('lenses.txt',encoding='utf-8')#lenses=[inst.strip().split('\t') for inst in fr.readlines()]lenses=[[1,1,1,'no'],[1,1,2,'yes'],[1,2,1,'no'],[1,2,2,'maybe'],[2,1,1,'no'],[2,1,2,'maybe'],[2,2,1,'no'],[2,2,2,'no']]lensesLabels=['level','specially','education']lensesTree=trees.createTree(lenses,lensesLabels)print(lensesTree)treePlotter.createPlot(lensesTree)a=list(map(int,input('输入预测的值').split(' ')))lensesLabels2=['level','specially','education']result = trees.classify(lensesTree, lensesLabels2, a)print('预测结果是',result)trees.storeTree(lensesTree,'classifierStorage.txt')mytree=trees.grabTree('classifierStorage.txt')print('输出存储的决策树',mytree)

treePlotter.py 

'''Created on Oct 14, 2010@author: Peter Harrington'''import matplotlib.pyplot as pltdecisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round4", fc="0.8")arrow_args = dict(arrowstyle=" maxDepth: maxDepth = thisDepth    return maxDepthdef plotNode(nodeTxt, centerPt, parentPt, nodeType):    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',      xytext=centerPt, textcoords='axes fraction',      va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )    def plotMidText(cntrPt, parentPt, txtString):    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree    depth = getTreeDepth(myTree)    firstStr = list(myTree.keys())[0]     #the text label for this node should be this    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    plotMidText(cntrPt, parentPt, nodeTxt)    plotNode(firstStr, cntrPt, parentPt, decisionNode)    secondDict = myTree[firstStr]    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD    for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes plotTree(secondDict[key],cntrPt,str(key)) #recursion else:   #it's a leaf node print the leaf node     plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW     plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)     plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD#if you do get a dictonary you know it's a tree, and the first element will be another dictdef createPlot(inTree):    fig = plt.figure(1, facecolor='white')    fig.clf()    axprops = dict(xticks=[], yticks=[])    createPlot.ax1 = plt.subplot(111, frameon=False, axprops)    #no ticks    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses     plotTree.totalW = float(getNumLeafs(inTree))    plotTree.totalD = float(getTreeDepth(inTree))    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;    plotTree(inTree, (0.5,1.0), '')    plt.show()#def createPlot():#    fig = plt.figure(1, facecolor='white')#    fig.clf()#    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses #    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)#    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)#    plt.show()def retrieveTree(i):    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},    {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}    ]    return listOfTrees[i]#createPlot(thisTree)

trees.py 

'''Created on Oct 12, 2010Decision Tree Source Code for Machine Learning in Action Ch. 3@author: Peter Harrington'''from math import logimport operatordef createDataSet():    dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]    labels = ['no surfacing','flippers']    #change to discrete values    return dataSet, labelsdef calcShannonEnt(dataSet):    numEntries = len(dataSet)    labelCounts = {}    for featVec in dataSet: #the the number of unique elements and their occurance currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1    shannonEnt = 0.0    for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob,2) #log base 2    return shannonEnt    def splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet: if featVec[axis] == value:     reducedFeatVec = featVec[:axis]     #chop out axis used for splitting     reducedFeatVec.extend(featVec[axis+1:])     retDataSet.append(reducedFeatVec)    return retDataSet    def chooseBestFeatureToSplit(dataSet):    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels    baseEntropy = calcShannonEnt(dataSet)    bestInfoGain = 0.0; bestFeature = -1    for i in range(numFeatures): #iterate over all the features featList = [example[i] for example in dataSet]#create a list of all the examples of this feature uniqueVals = set(featList)#get a set of unique values newEntropy = 0.0 for value in uniqueVals:     subDataSet = splitDataSet(dataSet, i, value)     prob = len(subDataSet)/float(len(dataSet))     newEntropy += prob * calcShannonEnt(subDataSet)      infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy if (infoGain > bestInfoGain):#compare this to the best gain so far     bestInfoGain = infoGain  #if better than current best, set to best     bestFeature = i    return bestFeature #returns an integerdef majorityCnt(classList):    classCount={}    for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]def createTree(dataSet,labels):    classList = [example[-1] for example in dataSet]    if classList.count(classList[0]) == len(classList):  return classList[0]#stop splitting when all of the classes are equal    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    myTree = {bestFeatLabel:{}}    del(labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals: subLabels = labels[:]#copy all of labels, so trees don't mess up existing labels myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)    return myTree    def classify(inputTree,featLabels,testVec):    firstStr = list(inputTree.keys())[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr)    key = testVec[featIndex]    valueOfFeat = secondDict[key]    if isinstance(valueOfFeat, dict):  classLabel = classify(valueOfFeat, featLabels, testVec)    else: classLabel = valueOfFeat    return classLabeldef storeTree(inputTree,filename):    import pickle    fw = open(filename,'wb+')    pickle.dump(inputTree,fw)    fw.close()    def grabTree(filename):    import pickle    fr = open(filename,'rb')    return pickle.load(fr)