> 文档中心 > 我用Python爬虫爬取并分析了C站前100用户最高访问的2000篇文章

我用Python爬虫爬取并分析了C站前100用户最高访问的2000篇文章

我用Python爬虫爬取并分析了C站前100用户最高访问的2000篇文章

  • 写在前面
  • 项目总述
  • 数据爬取
    • 获得服务器API
    • 程序总体设计
    • 用户名爬取
    • 文章爬取
  • 数据分析
    • 数据存储
    • 总体数据可视化
    • 数据分组
  • 完整代码

写在前面

最近系统地学习了正则表达式,发现正则表达式最大的应用之一——网络爬虫之前一直没有涉猎,遂借此契机顺带写一个爬虫的demo备用。选择对象是CSDN排行榜前100用户,各自按访问量从高到低排序的前20篇文章,使用一些简单的数据分析手段看看技术热点,方便今后拓宽技术栈。

项目总述

主要爬取的数据是文章标题和访问量,先总体可视化总体文章的技术关键词;然后按访问量分组,可视化每个访问段的技术热点。

数据爬取

获得服务器API

首先我们要知道通过什么接口可以获得网站数据:首先进入博客总榜,按F12进入控制台,选中Network选项卡监视网络请求,然后刷新网页。从下图可以看到在API"https://blog.csdn.net/phoenix/web/blog/all-rank?page=1&pageSize=20"中我们可以拿到我们想要的用户信息——主要是用户名
在这里插入图片描述
现在到用户博客首页,同样地,按F12进入控制台,选中Network选项卡监视网络请求,然后点击按访问量排序,则可以发现另一个关键APIhttps://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={},如下图所示。
在这里插入图片描述
我们与服务器的交互就依靠这两个API进行。

程序总体设计

思考一下,我们总共有如下的公共变量:

# 请求头headers = {     'User-Agent':     'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36' }# 排行榜urlrankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20"# 按访问量排行的文章列表mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}"userNames =[] # 用户名列表titleList = []# 文章标题列表viewCntList = [] # 访问量列表

为便于管理,引入一个类进行爬虫,专门负责与服务器进行数据交互

class GetInfo:    def __init__(self) -> None: # 请求头 self.headers = {     'User-Agent':     'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36' } # 排行榜url self.rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20" # 按访问量排行的文章列表 self.mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}" self.userNames = [] self.titleList, self.viewCntList = [], []

交互完成后,再使用别的库进行数据分析,将两个过程分离开

用户名爬取

定义一个私有的初始化函数

def __initRankUsrName(self):    usrNameList = []    for i in range(5): response = requests.get(url=self.rankUrl.format(i),    headers=self.headers) response.encoding = 'utf-8' response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') information = json.loads(str(soup)) for item in information['data']['allRankListItem']:     usrNameList.append(item['userName'])    return usrNameList

这里获取用户名主要是为了动态生成第二个API

文章爬取

再定义一个私有函数,输入参数是用户名列表:

def __initArticalInfo(self, usrList):    titleList = []    viewCntList = []    for name in usrList: url = self.mostViewArtical.format(name) # print(url) response = requests.get(url=url, headers=self.headers) response.encoding = 'utf-8' response.raise_for_status() titleList.extend(re.findall(r"\"title\":\"(.*?)\"", response.text)) viewCntList.extend(re.findall(r"\"viewCount\":(.*?),", response.text))    return titleList, viewCntList

这里我使用正则表达式直接处理字符串,并返回文章标题列表、访问量列表。可以随便访问一个API做实验,这里以我的用户名为例,可以看到要获取文章标题就是以\"title\":\"(.*?)\"去匹配,其中\用于转义;要获取访问量就是以\"viewCount\":(.*?),去匹配,访问数字没有加引号。

事实上,用正则匹配不需要将返回的字符串加载为Json字典,可能有更快的处理效率(但不如json灵活)

在这里插入图片描述
这个爬虫类就设计好了,完整代码如下:

class GetInfo:    def __init__(self) -> None: # 请求头 self.headers = {     'User-Agent':     'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36' } # 排行榜url self.rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20" # 按访问量排行的文章列表 self.mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}" self.userNames = self.__initRankUsrName() self.titleList, self.viewCntList = self.__initArticalInfo(     self.userNames)    def __initArticalInfo(self, usrList): titleList = [] viewCntList = [] for name in usrList:     url = self.mostViewArtical.format(name)     # print(url)     response = requests.get(url=url, headers=self.headers)     response.encoding = 'utf-8'     response.raise_for_status()     titleList.extend(re.findall(r"\"title\":\"(.*?)\"", response.text))     viewCntList.extend(  re.findall(r"\"viewCount\":(.*?),", response.text)) return titleList, viewCntList    def __initRankUsrName(self): usrNameList = [] for i in range(5):     response = requests.get(url=self.rankUrl.format(i), headers=self.headers)     response.encoding = 'utf-8'     response.raise_for_status()     soup = BeautifulSoup(response.text, 'html.parser')     information = json.loads(str(soup))     for item in information['data']['allRankListItem']:  usrNameList.append(item['userName']) return usrNameListinfo = GetInfo()

使用也很方便,只需要实例化调用其中的列表属性即可。

数据分析

数据存储

将文本数据存成csv格式,先设计表头:

if not os.path.exists("articalInfo.csv"):    #创建存储csv文件存储数据    with open('articalInfo.csv', "w", encoding="utf-8-sig", newline='') as f: csv_head = csv.writer(f) csv_head.writerow(['title', 'viewCnt'])

注意编码格式为utf-8-sig,否则会乱码

接下来存数据:

length = len(info.titleList)for i in range(length):    if info.titleList[i]: with open('articalInfo.csv', 'a+', encoding='utf-8-sig') as f:     f.write(info.titleList[i] + ',' + info.viewCntList[i] + '\n')

总体数据可视化

新建一个模块专门用于可视化数据,与爬虫分离开,因为爬虫是慢IO过程,会影响调试效率,后面可以试试用协程来处理爬虫。

首先,把爬虫的信息读取到txt文件去

df = pd.read_csv('articalInfoNor.csv', encoding='utf-8-sig',usecols=['title', 'viewCnt'])titleList = ','.join(df['title'].values)with open('text.txt','a+', encoding='utf-8-sig') as f:    f.writelines(titleList)

如何返回分词结果:

def getKeyWordText():    # 读取文件信息    file = open(path.join(path.dirname(__file__), 'text.txt'), encoding='utf-8-sig').read()    return ' '.join(jieba.cut(file))

借助词云库可视化一下:

bg_pic = imread('2.jpg')#生成词云wordcloud = WordCloud(font_path=r'C:\Windows\Fonts\simsun.ttc',mask=bg_pic,background_color='white',scale=1.5).generate(text)image_colors = ImageColorGenerator(bg_pic)#显示词云图片plt.imshow(wordcloud)plt.axis('off')plt.show()#保存图片wordcloud.to_file('test.jpg')

在这里插入图片描述

这个大大的“的”是什么鬼?显然高频关键词里有太多语气助词、连接词,我们最好设置一个停用词列表把这些明显不需要的词屏蔽掉。我这里采用修饰器的方法让代码更简洁,关于修饰器的内容可以参考Python修饰器

def splitText(mode):    stopWords = ["的","与","和","建议","收藏","使用","了","实现","我","中","你","在","之","年","月","日"]    def warpper(func): def warp():     textSplit = func()     if mode:  temp = [word for word in textSplit if word not in stopWords]  return ' '.join(temp)     else:  return ' '.join(textSplit) return warp    return warpper

当mode=True时启用屏蔽,否则关闭屏蔽,那么之前的函数应该修改为:

# 返回关键词文本@splitText(False)def getKeyWordText():    # 读取文件信息    file = open(path.join(path.dirname(__file__), 'text.txt'), encoding='utf-8-sig').read()    return jieba.cut(file)

再来一次:

在这里插入图片描述

现在就正常多了。可以看到Python和Java是绝对的领先,之后是各位总结的方法论等等,算法的词频反而不高?

数据分组

我把数据进一步分层为

1、访问量>10W
2、访问量5W~10W
3、访问量1W~5W
4、访问量5K~1W
5、访问量5K以下

先来看看数据分布情况:

在这里插入图片描述
我猜如果分段分得再细一点可能趋于正态分布~

分组可视化看看:

在这里插入图片描述

>10W的词云

在这里插入图片描述

5~10W的词云

在这里插入图片描述

1~5W的词云

在这里插入图片描述

5k~1W的词云

感觉从这里开始更百花齐放一些,似乎也更关注具体问题的解决

在这里插入图片描述

5k以下的词云

不得不感叹python在每个阶段都是牌面

完整代码

import requestsfrom bs4 import BeautifulSoupimport os, json, re, csvclass GetInfo:    def __init__(self) -> None: # 请求头 self.headers = {     'User-Agent':     'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36' } # 排行榜url self.rankUrl = "https://blog.csdn.net/phoenix/web/blog/all-rank?page={}&pageSize=20" # 按访问量排行的文章列表 self.mostViewArtical = "https://blog.csdn.net/community/home-api/v1/get-business-list?page=1&size=20&businessType=blog&orderby=ViewCount&noMore=false&username={}" self.userNames = self.__initRankUsrName() self.titleList, self.viewCntList = self.__initArticalInfo(     self.userNames)    def __initArticalInfo(self, usrList): titleList = [] viewCntList = [] for name in usrList:     url = self.mostViewArtical.format(name)     # print(url)     response = requests.get(url=url, headers=self.headers)     response.encoding = 'utf-8'     response.raise_for_status()     titleList.extend(re.findall(r"\"title\":\"(.*?)\"", response.text))     viewCntList.extend(  re.findall(r"\"viewCount\":(.*?),", response.text)) return titleList, viewCntList    def __initRankUsrName(self): usrNameList = [] for i in range(5):     response = requests.get(url=self.rankUrl.format(i), headers=self.headers)     response.encoding = 'utf-8'     response.raise_for_status()     soup = BeautifulSoup(response.text, 'html.parser')     information = json.loads(str(soup))     for item in information['data']['allRankListItem']:  usrNameList.append(item['userName']) return usrNameList info = GetInfo()if not os.path.exists("articalInfo.csv"):    #创建存储csv文件存储数据    with open('articalInfo.csv', "w", encoding="utf-8-sig", newline='') as f: csv_head = csv.writer(f) csv_head.writerow(['title', 'viewCnt'])length = len(info.titleList)for i in range(length):    if info.titleList[i]: with open('articalInfo.csv', 'a+', encoding='utf-8-sig') as f:     f.write(info.titleList[i] + ',' + info.viewCntList[i] + '\n')
from wordcloud import WordCloud,ImageColorGeneratorimport matplotlib.pyplot as pltfrom imageio import imreadimport jiebaimport pandas as pdfrom os import pathdf = pd.read_csv('articalInfoCom.csv', encoding='utf-8-sig',usecols=['title', 'viewCnt'])titleList = ','.join(df['title'].values)with open('text.txt','a+', encoding='utf-8-sig') as f:    f.writelines(titleList)def splitText(mode):    stopWords = ["的","与","和","建议","收藏","使用","了","实现","我","中","你","在","之","年","月","日"]    def warpper(func): def warp():     textSplit = func()     if mode:  temp = [word for word in textSplit if word not in stopWords]  return ' '.join(temp)     else:  return ' '.join(textSplit) return warp    return warpper# 返回关键词文本@splitText(True)def getKeyWordText():    # 读取文件信息    file = open(path.join(path.dirname(__file__), 'text.txt'), encoding='utf-8-sig').read()    return jieba.cut(file)text = getKeyWordText()#读取txt文件、背景图片bg_pic = imread('2.jpg')#生成词云wordcloud = WordCloud(font_path=r'C:\Windows\Fonts\simsun.ttc',mask=bg_pic,background_color='white',scale=1.5).generate(text)image_colors = ImageColorGenerator(bg_pic)#显示词云图片plt.imshow(wordcloud)plt.axis('off')plt.show()#保存图片wordcloud.to_file('test.jpg')

医疗百科