> 文档中心 > 对齐PyTorch,一文详解OneFlow的DataLoader实现

对齐PyTorch,一文详解OneFlow的DataLoader实现

对齐PyTorch,一文详解OneFlow的DataLoader实现

撰文 | 赵露阳

在最新的OneFlow v0.5.0版本中,我们增加了许多新特性,比如:

  • 新增动态图特性:OneFlow 默认以动态图模式(eager)运行,与静态图模式(graph)相比,更容易搭建网络、调试和验证算法。

  • 面向对象式的动态图接口 nn.Module,熟悉 PyTorch 的用户可以轻松上手。

  • “一行代码转换 OneFlow 与 PyTorch 网络”:与 PyTorch 对齐的算子数目增加至200+。在 ResNet50、AlexNet 等 十几个常用网络 上已通过 import oneflow as torch 和 import torch as flow 验证。注意:此特性是为方便用户由 PyTorch 迁移至 OneFlow 而设计,并不是承诺完全兼容 PyTorch。

  • 面向对象式的静态图接口:新增面向对象的静态图接口 nn.Graph。保留了 OneFlow 静态图性能优势的同时,让静态图的编程门槛与动态图接近,期待更多的算法工程师把 OneFlow 的高性能优势玩起来。这是一个用 nn.Graph 搭建 ResNet50 示例

  • 易用高效的分布式训练:分布式训练是大势所趋,OneFlow 本版本新增的 Consistent Tensor,让用户可以像操作单机单卡一样,操作整个集群,并立即看到效果。新增的 launch 模块、DDP 模块 配合 OneFlow 的一致性视角 让用户轻松启动分布式训练,无论是 数据并行、模型并行、还是流水并行,OneFlow 均原生支持,易用高效。

其中,最重要的新特性之一,就是OneFlow的动态图做到了几乎和PyTorch一致,从Tensor、nn.Module、到autograd、functional api等,其中也包括和torch几乎对齐的DataLoader/Dataset设计,笔者有幸开发了OneFlow中的这一模块。

https://github.com/Oneflow-Inc/oneflow/pull/5406https://github.com/Oneflow-Inc/oneflow/pull/5500https://github.com/Oneflow-Inc/oneflow/pull/5644https://github.com/Oneflow-Inc/oneflow/pull/6280

本文将对OneFlow/PyTorch中的DataLoader原理、工作流程进行梳理:

  • dataloader简介

  • dataloader原理

  • dataloader工作流程

  • multiprocessing dataloader工作原理

1

简介

简单来说,DataLoader是深度学习中必不可少的,用于处理Dataset产生每个iter过程中批量数据和label的一种数据加载器。正如PyTorch文档中的描述:DataLoader,结合了Sampler、Dataset,提供了对某个dataset可迭代的数据集合。DataLoader支持单进程、多进程的加载数据集合。

2

dataloader原理

核心组建

  • Dataloader

  • Dataset

  • Sampler

  • Fetcher

DataLoader工作原理的简单总结:

1.Dataloader是负责数据加载的核心;DataLoaderIter是具体执行单位。dataloader进入到每一次iter中都会通过DataloaderIter来处理具体的数据加载过程;

2.Dataset是数据集的基类,任何自定义数据集都需要继承它并通过重写getitem方法来定义取数据的方式;

3.Sampler是负责index相关的采样器、每个iter迭代都会通过Sampler生成要采样的数据集的index;

4.Fetcher更像是数据的收集器。根据Sampler产生的batch个index去数据集中fetch对应的数据、并通过相应的collate_fn方法将获取的数据收集打包成最终可用的形式,返回给DataLoader。

使用示例

1.MNIST

下面用PyTorch官方examples的一个简单例子,用MNIST数据集训练分类网络来说明DataLoader的用法:

transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])dataset1 = datasets.MNIST('../data', train=True, download=True, transform=transform)dataset2 = datasets.MNIST('../data', train=False, transform=transform)train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

可以看到,dataset1、dataset2分别是表示数据集的训练集、测试集。在PyTorch中是通过torchvision.datasets.MNIST定义的。MNIST继承自VisionDataset,而VisionDataset则继承自torch.utils.data.Dataset。在MNIST中,实现了数据集最重要的getitem方法,用于根据index取对应数据:

def __getitem__(self, index: int) -> Tuple[Any, Any]:    """ Args:   index (int): Index Returns:   tuple: (image, target) where target is index of the target class. """    img, target = self.data[index], int(self.targets[index])    # doing this so that it is consistent with all other datasets    # to return a PIL Image    img = Image.fromarray(img.numpy(), mode='L')    if self.transform is not None: img = self.transform(img) if self.target_transform is not None:   target = self.target_transform(target)   return img, target

在OneFlow中,oneflow.utils.data对应torch.utils.data;flowvision对应torchvision,使用方式几乎完全一致。例如:对应MNIST数据集,即可直接通过flowvision.datasets.MNIST使用。

dataset1、dataset2定义完成后,传入分别用于训练、验证的dataloader(train_loader、test_loader)。之后,在train/test的循环中,即可迭代dataloader获取每个iter的数据和label:

def train(args, model, device, train_loader, optimizer, epoch):    model.train()    for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) ....

2.ImageNet

这里还是用PyTorch官方examples里ImageNet数据集的训练为例:

train_dataset = datasets.ImageFolder( traindir, transforms.Compose([   transforms.RandomResizedCrop(224),   transforms.RandomHorizontalFlip(),   transforms.ToTensor(),   normalize, ]))    if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)    else: train_sampler = None    train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler)    val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([   transforms.Resize(256),   transforms.CenterCrop(224),   transforms.ToTensor(),   normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)

可以看见,大体流程和上面的MNIST差不多:

1.先是构造Dataset,这里为通过datasets.ImageFolder构造。ImageFolder是用于读取/处理以文件夹形式存放的图片数据集:

class ImageFolder(DatasetFolder):    r"""A generic data loader where the images are arranged in this way by default:    .. code-block:: shellroot/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png    This class inherits from :class:`~vision.datasets.DatasetFolder` so    the same methods can be overridden to customize the dataset.    Args: root (string): Root directory path. transform (callable, optional): A function/transform that  takes in an PIL image   and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the   target and transforms it. loader (callable, optional): A function to load an image given its path. is_valid_file (callable, optional): A function that takes path of an Image file   and check if the file is a valid file (used to check of corrupt files)     Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples    """    def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None,    ): super(ImageFolder, self).__init__(   root,   loader,   IMG_EXTENSIONS if is_valid_file is None else None,   transform=transform,   target_transform=target_transform,   is_valid_file=is_valid_file, ) self.imgs = self.samples

可以看到其继承自DatasetFolder、初始化时主要参数有:

  • root:图片文件夹路径

  • transform:对经过loader读取到的PIL图片,经过哪些transform处理,如上述的Resize、CenterCrop等

  • loader:一个用于根据path加载图片的图像加载器,通常默认的loader是PIL

DatasetFolder中实现了Dataset中最重要的getitem方法:

def __getitem__(self, index: int) -> Tuple[Any, Any]:    """ Args:   index (int): Index Returns:   tuple: (sample, target) where target is class_index of the target class. """    path, target = self.samples[index]    sample = self.loader(path)    if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None:   target = self.target_transform(target)   return sample, target

通过getitem定义了如何根据index取到相应数据的方式。

2.其次如果是多机分布式训练,则Sampler需要使用专门为分布式训练设计的DistributedSampler类(否则不用特殊设置,用默认的即可);这里还有个细节,训练集和验证集上,对dataset做了不同的transform,训练集用了RandomResizedCrop、RandomHorizontalFlip;验证集则是Resize、CenterCrop,经过transform后,最终通过ToTensor方法转化成Tensor。

3.构造用于训练、验证的Dataloader(train_loader、val_loader),后面的使用方式就很简单了,在train/eval的loop中直接使用即可:

for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None:   images = images.cuda(args.gpu, non_blocking=True) if torch.cuda.is_available():   target = target.cuda(args.gpu, non_blocking=True) .....

3

dataloader工作流程

下面结合代码看一下主要流程:

Dataset 

任何自定义数据集,必须继承Dataset类并实现_getitem__方法,用于定义根据传入的index获取数据的方式。同时,自定义数据集也可选重写len方法,用于判断数据集的size。

class Dataset(Generic[T_co]):    r"""An abstract class representing a :class:`Dataset`.    All datasets that represent a map from keys to data samples should subclass    it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a    data sample for a given key. Subclasses could also optionally overwrite    :meth:`__len__`, which is expected to return the size of the dataset by many    :class:`~flow.utils.data.Sampler` implementations and the default options    of :class:`~flow.utils.data.DataLoader`.    .. note::      :class:`~flow.utils.data.DataLoader` by default constructs a index      sampler that yields integral indices.  To make it work with a map-style      dataset with non-integral indices/keys, a custom sampler must be provided.    """    def __getitem__(self, index) -> T_co: raise NotImplementedError    def __add__(self, other: "Dataset[T_co]") -> "ConcatDataset[T_co]": return ConcatDataset([self, other])

DataLoader 

DataLoader是整个数据处理过程的核心。

class DataLoader(Generic[T_co]):    def __init__(   self,   dataset: Dataset[T_co],   batch_size: Optional[int] = 1,   shuffle: bool = False,   sampler: Optional[Sampler[int]] = None,   batch_sampler: Optional[Sampler[Sequence[int]]] = None,   num_workers: int = 0,   collate_fn: Optional[_collate_fn_t] = None,   drop_last: bool = False,   timeout: float = 0,   worker_init_fn: Optional[_worker_init_fn_t] = None,   multiprocessing_context=None,   generator=None,   *,   prefetch_factor: int = 2,   persistent_workers: bool = False ):    ...    ...# We quote '_BaseDataLoaderIter' since it isn't defined yet and the definition can't be moved up    # since '_BaseDataLoaderIter' references 'DataLoader'.    def __iter__(self) -> "_BaseDataLoaderIter": # When using a single worker the returned iterator should be # created everytime to avoid reseting its state # However, in the case of a multiple workers iterator # the iterator is only created once in the lifetime of the # DataLoader object so that workers can be reused if self.persistent_workers and self.num_workers > 0:   if self._iterator is None:self._iterator = self._get_iterator()   else:self._iterator._reset(self)   return self._iterator else:   return self._get_iterator()def _get_iterator(self) -> "_BaseDataLoaderIter": if self.num_workers == 0 or self.num_workers == 1:   return _SingleProcessDataLoaderIter(self) else:   self.check_worker_number_rationality()   return _MultiProcessingDataLoaderIter(self)

DataLoader在每一个iter迭代过程中,最重要的就是通过上面的__iter__方法完成取数据和label。__iter__里通过_get_iterator方法获取相应的DataLoaderIter实例。

  • 在单进程下,即_SingleProcessDataLoaderIter

  • 多进程下,即_MultiProcessingDataLoaderIter,他们都继承自_BaseDataLoaderIter

DataLoaderIter 

DataLoaderIter负责DataLoader在每个迭代中具体事务的处理。

class _BaseDataLoaderIter(object):    def __init__(self, loader: DataLoader) -> None: self._dataset = loader.dataset self._dataset_kind = loader._dataset_kind self._IterableDataset_len_called = loader._IterableDataset_len_called self._auto_collation = loader._auto_collation self._drop_last = loader.drop_last self._index_sampler = loader._index_sampler self._num_workers = loader.num_workers self._prefetch_factor = loader.prefetch_factor self._pin_memory = False self._timeout = loader.timeout self._collate_fn = loader.collate_fn self._sampler_iter = iter(self._index_sampler) self._base_seed = flow.tensor([0], dtype=flow.int64).uniform_().numpy().item() # TODO: flow.empty() # self._base_seed = flow.empty((), dtype=flow.int64).random_(generator=loader.generator).item() self._persistent_workers = loader.persistent_workers self._num_yielded = 0 self._profile_name = "enumerate(DataLoader)#{}.__next__".format(   self.__class__.__name__ )    def __iter__(self) -> "_BaseDataLoaderIter": return self    def _reset(self, loader, first_iter=False): self._sampler_iter = iter(self._index_sampler) self._num_yielded = 0 self._IterableDataset_len_called = loader._IterableDataset_len_called    def _next_index(self): return next(self._sampler_iter)  # may raise StopIteration    def _next_data(self): raise NotImplementedError    def __next__(self) -> Any: if self._sampler_iter is None:   self._reset() data = self._next_data() self._num_yielded += 1 if (   self._dataset_kind == _DatasetKind.Iterable   and self._IterableDataset_len_called is not None   and self._num_yielded > self._IterableDataset_len_called ):   warn_msg = ("Length of IterableDataset {} was reported to be {} (when accessing len(dataloader)), but {} ""samples have been fetched. "   ).format(self._dataset, self._IterableDataset_len_called, self._num_yielded)   if self._num_workers > 1:warn_msg += "Multiprocessing dataloader is not support yet!"   warnings.warn(warn_msg) return data    def __len__(self) -> int: return len(self._index_sampler)    def __getstate__(self): raise NotImplementedError("{} cannot be pickled", self.__class__.__name__)class _SingleProcessDataLoaderIter(_BaseDataLoaderIter):    def __init__(self, loader): super(_SingleProcessDataLoaderIter, self).__init__(loader) assert self._timeout == 0 assert 0 <= self._num_workers <= 1 self._dataset_fetcher = _DatasetKind.create_fetcher(   self._dataset_kind,   self._dataset,   self._auto_collation,   self._collate_fn,   self._drop_last, )    def _next_data(self): index = self._next_index()  # may raise StopIteration if self._pin_memory:   raise NotImplementedError("Dataloader pin memory is not support yet!") return self._dataset_fetcher.fetch(index)

在每一个iter迭代时,会调用_BaseDataLoaderIter的__next__方法,进而调用自类实现的_next_data方法获取数据。以_SingleProcessDataLoaderIter为例:

  • index = self._next_index()通过Sampler获取此次迭代的数据集索引;

  • self._dataset_fetcher.fetch(index)Fetcher根据index索引取相应的数据。

Fetcher 

Fetcher作为数据收集器,会根据Sampler产生的batch的index,来从数据集中切分、收集、打包成完整可用的一个batch的数据,并返回给DataLoader使用。

class _MapDatasetFetcher(_BaseDatasetFetcher):    def __init__(self, dataset, auto_collation, collate_fn, drop_last): super(_MapDatasetFetcher, self).__init__(   dataset, auto_collation, collate_fn, drop_last )    def fetch(self, possibly_batched_index): if self.auto_collation:   data = [self.dataset[idx] for idx in possibly_batched_index] else:   data = self.dataset[possibly_batched_index] return self.collate_fn(data)

Fetcher这里和DataLoaderIter(BaseDataLoaderIter)_类似,_都有一个基类的实现BaseDatasetFetcher。根据不同的数据类型,进入到不同的子类实现中,这里以常用的_MapDatasetFetcher的子类实现为例,看一下Fetcher的主要工作。

可以看见,主要就是:

  • data = [self.dataset[idx] for idx in possibly_batched_index]

  • return self.collate_fn(data)

1.根据传入的batch个index列表,去dataset中去切分相应的数据,返回的是取出后的batch个数据的列表;

2.根据传入的或自定义的collate_fn方法,收集处理这batch个数据,并打包成训练/验证时可直接使用的Tensor。

4

multiprocessing dataloader工作原理

原理

普通的单进程DataLoader在处理每个iter的数据处理是iter-by-iter且同步的,受制于Python没有实际上的多线程执行,所以单进程的DataLoader通常是比较慢的。多进程DataLoader,即通过Python的multiprocessing开启多个Python的worker进程,譬如开启4个worker进程后,理论上每单位时间可以处理4个iter的数据集,加速数据处理/加载的过程。

单进程DataLoader下,由于数据处理是iter-by-iter的,下一个iter的处理需要等待当前iter完成后才可开始;多进程DataLoader和单进程DataLoader的主要区别就在于可以通过Python的multiprocessing模块,启动多个worker进程加速这个过程。

这里以4进程的DataLoader为例:

DataLoader的主线程将当前iter的任务下发给worker1之后,再下发下一个iter的任务给worker2....直至下发第4个iter的处理任务给worker4。这一步骤主要在dataloader.py的L1024-L1026中实现:

# prime the prefetch loopfor _ in range(self._prefetch_factor * self._num_workers):    self._try_put_index()

陆续发送完index后,这4个worker可以并行的工作,陆续完成自己iter的处理任务后,将结果塞入一个Queue队列中,DataLoader的主线程从队列中取数据即可。

具体到每个worker的工作流程,其实和单进程的DataLoader工作流程是类似的,下面主要介绍下多进程和单进程DataLoader的区别,以及多个worker之间是如何协同工作的。

工作流程

_MultiProcessingDataLoaderIter

def _next_data(self):  # DataLoaderIter通过此方法获取每个iter的数据,主要调用_get_data实现def _get_data(self):  # _get_data方法中,主要通过调用_try_get_data()获取数据def _try_get_data(self, timeout=_utils.MP_STATUS_CHECK_INTERVAL):  # 从主进程的_data_queue中获取数据  ...  try:      data = self._data_queue.get(timeout=timeout)      return (True, data)  except Exception as e:     ...def _process_data(self, data):  # 主要工作即:1.通过_try_put_index()来将下一个iter的index放入一个活跃的worker进程中  # 2.同时标记_rcvd_idx,使其增加1。  self._rcvd_idx += 1  self._try_put_index()  if isinstance(data, ExceptionWrapper):    data.reraise()    return datadef _try_put_index(self):  # 主要工作即遍历所有workers,找到第一个活跃的worker(worker_queue_idx标识)  # 将index和_send_idx信息放入此worker的index_queue中  # 每个worker拥有独立的index_queue,收到index_queue的信息后即开始工作  assert self._tasks_outstanding < self._prefetch_factor * self._num_workers  try:    index = self._next_index()    except StopIteration:      return    for _ in range(self._num_workers):  # find the next active worker, if any      worker_queue_idx = next(self._worker_queue_idx_cycle)      if self._workers_status[worker_queue_idx]: break    else:      # not found (i.e., didn't break)      return    self._index_queues[worker_queue_idx].put((self._send_idx, index))    self._task_info[self._send_idx] = (worker_queue_idx,) self._tasks_outstanding += 1    self._send_idx += 1

_next_data()

⬇️

_get_data() ➡️ _try_get_data()

⬇️

_process_data() ➡️ _try_put_index()

每个worker独立工作,主要代码在oneflow/python/oneflow/utils/data/_utils/worker.py的_worker_loop()方法中:

while watchdog.is_alive():   try:r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)   except queue.Empty:continue   if isinstance(r, _ResumeIteration):# Acknowledge the main processdata_queue.put((r, None))iteration_end = False# Recreate the fetcher for worker-reuse policyfetcher = _DatasetKind.create_fetcher(  dataset_kind, dataset, auto_collation, collate_fn, drop_last)continue   elif r is None:# Received the final signalassert done_event.is_set() or iteration_endbreak   elif done_event.is_set() or iteration_end:# `done_event` is set. But I haven't received the final signal# (None) yet. I will keep continuing until get it, and skip the# processing steps.continue   idx, index = r   data: Union[_IterableDatasetStopIteration, ExceptionWrapper]   if init_exception is not None:data = init_exceptioninit_exception = None   else:try:  data = fetcher.fetch(index)except Exception as e:  if (      isinstance(e, StopIteration)      and dataset_kind == _DatasetKind.Iterable  ):      data = _IterableDatasetStopIteration(worker_id)      # Set `iteration_end`      #   (1) to save future `next(...)` calls, and      #   (2) to avoid sending multiple `_IterableDatasetStopIteration`s.      iteration_end = True  else:      # It is important that we don't store exc_info in a variable.      # `ExceptionWrapper` does the correct thing.      # See NOTE [ Python Traceback Reference Cycle Problem ]      data = ExceptionWrapper( where="in DataLoader worker process {}".format(worker_id)      )   data_queue.put((idx, data))   del data, idx, index, r  # save memory    except KeyboardInterrupt: # Main process will raise KeyboardInterrupt anyways. pass

每个worker在自己的worker loop中,一旦

r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)获取index_queue中的index数据,就会开始工作:

idx, index = r >> data = fetcher.fetch(index) 这部分内容和之前描述的单进程DataLoader的工作流程没有区别。

当获取到处理完成的数据data后,会将其放入到data loader main线程的data_queue中: data_queue.put((idx, data)) 等待DataLoader主线程从queue中获取结果。

以上即为多进程DataLoader的主要工作流程。

5

结语

本文梳理总结了DataLoader/Dataset,希望能对大家了解OneFlow/PyTorch动态图模式下的DataLoader/Dataset工作原理有所帮助。 

对齐PyTorch的DataLoader/Dataset只是第一步,后续仍然面临着效率瓶颈等问题,因为即使使用了multiprocess的DataLoader,在某些情况下,图像解码、Python下调用C++ op执行各种transform时仍可能遭遇性能问题,造成训练过程中GPU打不满/等待CPU数据处理等情况,后续需要考虑更高效的解决方案(如Dali等)。

其他人都在看

  • OneFlow v0.5.0正式上线

  • 计算机架构史上的一次伟大失败

  • OneFlow中的错误处理:Maybe

  • 最理想的点到点通信库究竟是怎样的

  • 玩转大模型,是时候展示你真正的技术了

  • 如何实现比PyTorch快6倍的Permute/Transpose算子

点击“阅读原文”,欢迎下载体验OneFlow新一代开源深度学习框架

对齐PyTorch,一文详解OneFlow的DataLoader实现

书本网