> 文档中心 > 【OpenCV】“帧差法”实现移动物体的检测(车辆识别)

【OpenCV】“帧差法”实现移动物体的检测(车辆识别)

目录

一、帧差法

1、概念

2、为什么帧差法可以检测运动的物体? 

二、使用OpenCV配合帧差法实现车辆识别

1、加载视频

2、灰度处理+帧差计算

3、二值化

4、腐蚀

5、膨胀

6、框选出车辆

三、全部代码+实现效果

1、代码

2、车辆检测效果

四、帧差法存在不足之处


一、帧差法

 

1、概念

        帧差法是一种通过对视频图像序列中 相邻两帧作差分运算 来获得运动目标轮廓的方法,它可以很好地适用于存在多个运动目标和摄像机移动的情况。

        当监控场景中出现异常物体运动时,帧与帧之间会出现较为明显的差别,两帧相减,得到两帧图像 亮度差的绝对值  ,判断它是否大于 阈值 来分析视频或图像序列的运动特性,确定图像序列中有无物体运动。

 

2、为什么帧差法可以检测运动的物体? 

        😎还记得小时候的葫芦娃动画吗?每个人物其实都是一张剪纸,也被叫做“剪纸动画”,剪一张就是一帧,假设葫芦娃动画为每秒25帧,1秒内连续播放25张不同的剪纸。

        😎因为每一帧之间是有差异的,所以我们可以看到剪纸 动 起来了。

 

  •  😋博主演示一遍剪纸动画,让大家更直观的感受

博主有以下同一条鲨鱼的不同形态的png图片,使用图片查看来切换显示每一张图片

 👀可以看到鲨鱼动起来了!!!

        😎因此可以通过判断 前后两帧是否相同 ,来判断是否有运动的物体,即通过帧差法来检测运动的物体。

 

        😁所以下面跟着博主来学习使用OpenCV通过帧差法来进行移动车辆的识别。当然不止可以识别车辆,其他移动的物体也可以识别。

 

二、使用OpenCV配合帧差法实现车辆识别

 

  • 开发工具

         🔎Qt 5.8.0  +  OpenCV

1、加载视频

  • 通过VideoCapture来加载本地视频,循环读取每一帧并进行显示
int main(int argc, char *argv[]){    Mat frame;    VideoCapture cap("D:/QT-Project/image/carMove.mp4");    while(cap.read(frame))    { //读取一帧显示一帧 imshow("frame", frame); //延时 waitKey(25);    }    return 0;}

2、灰度处理+帧差计算

  • 为了提高计算机的运算速度,图像处理前一般将图像转成灰度图

        因为彩色图片是3通道(RGB)24位深度的图像,而灰度图是单通道8位深度的图像,因此处理灰度图比彩色图效率快多了。

  • frontMat为前一帧,afterMat为后一帧
//灰度处理cvtColor(frontMat, frontGray, CV_BGR2GRAY);cvtColor(afterMat, afterGray, CV_BGR2GRAY);//帧差处理 找到帧与帧之间运动的物体差异absdiff(frontGray, afterGray, diffGray);
  • 效果:原图(左)、处理后(右)

        通过下图可以发现检测是检测出来了,但是画面非常的暗淡(不清晰),因此需要通过二值化来让图像更清晰点。

 

3、二值化

  • 通过threshold函数将图像二值化

        参数一为原图,参数二为处理后的图,直接将处理后的图覆盖掉原图即可

//二值化:黑白分明 会产生大量白色噪点threshold(diffGray, diffGray, 25, 255, CV_THRESH_BINARY);
  • 下面是二值化处理过后的效果

        可以发现图像确实是变“清晰”了,因为二值化后的图像只有黑白两种颜色。并且我们还可以发现白色噪点非常多,因为摄像机抖动,风吹树叶等原因,因此还需要通过腐蚀去除掉这些白色噪点

4、腐蚀

  • 概念

        腐蚀是针对图片的二值化数据进行操作的,主要是针对高亮部分。使用算法,将图像的边缘腐蚀掉。作用就是将目标的边缘的“毛刺”踢除掉。

如下图所示: 

 

 

  •  通过erode函数将图像进行腐蚀
//腐蚀处理:去除白色噪点 噪点不能完全去除,反而主要物体会被腐蚀的图案都变得不明显Mat element = cv::getStructuringElement(MORPH_RECT, Size(3, 3));erode(diffGray, diffGray, element);
  •  下面是腐蚀之后的效果

        😧白色噪点确实是被去除了,但是我们的车辆也被腐蚀的不成车样(内部坑坑洼洼的),所以还需要通过膨胀将车辆进行进一步处理。

 

5、膨胀

  • 概念

        膨胀是针对图片的二值化数据进行操作的,主要是针对高亮部分。使用算法,将图像的边缘扩大些。作用就是将目标的边缘或者是内部的坑填掉。

如下图所示:

 

 

  •  通过dilate函数将图像进行膨胀
//膨胀处理:将白色区域变“胖”Mat element2 = cv::getStructuringElement(MORPH_RECT, Size(20, 20));dilate(diffGray, diffGray, element2);
  •  下面是膨胀之后的效果 

        我们的车辆变成一个个大方块了,做到这一步差不多就可以来标记运动的车辆了,只要画矩形将白色大方块框起来即可。

6、框选出车辆

 

  • 下面是用白色的框框,框选出来的效果

        框选的原理就是找到白色方块最左边的点与最右边的点,得到之间的大小差距(矩形宽),找到白色方块最上边的点与最下边的点,得到之间的大小差距(矩形高)。

        通过宽高即可画出一个把白色方块包含在内的矩形,矩形左上角坐标通过白色方块最上方的值和最左方的值来确定。

  • 我们只要将白色方框改个显眼的颜色,并在原视频的对应位置画出这个框框即可。下面附全部代码。

三、全部代码+实现效果

 

1、代码

#include #include using namespace std;using namespace cv;//帧差法检测车辆Mat MoveCheck(Mat &frontMat, Mat &afterMat){    Mat frontGray ,afterGray, diffGray;    Mat resframe = afterMat.clone();    //灰度处理    cvtColor(frontMat, frontGray, CV_BGR2GRAY);    cvtColor(afterMat, afterGray, CV_BGR2GRAY);    //imshow("GRAY", frontGray);    //帧差处理 找到帧与帧之间运动的物体差异    //缺点:会把其他运动物体也算进来    absdiff(frontGray, afterGray, diffGray);    //imshow("absdiff", diffGray);    //二值化:黑白分明 会产生大量白色噪点    threshold(diffGray, diffGray, 25, 255, CV_THRESH_BINARY);    //imshow("diff", diffGray);    //腐蚀处理:去除白色噪点 噪点不能完全去除,反而主要物体会被腐蚀的图案都变得不明显    Mat element = cv::getStructuringElement(MORPH_RECT, Size(3, 3));    erode(diffGray, diffGray, element);    //imshow("erode", diffGray);    //膨胀处理:将白色区域变“胖”    Mat element2 = cv::getStructuringElement(MORPH_RECT, Size(20, 20));    dilate(diffGray, diffGray, element2);    //imshow("dilate", diffGray);    //动态物体标记    vector<vector> contours; //保存关键点    findContours(diffGray, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));    //提取关键点    vector<vector> contours_poly(contours.size());    vector boundRect(contours.size());    int x, y, w, h;    int num = contours.size();    for(int i =0; i< num; i++)    { approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true); boundRect[i] = boundingRect(Mat(contours_poly[i])); x = boundRect[i].x; y = boundRect[i].y; w = boundRect[i].width; h = boundRect[i].height; //绘制 rectangle(resframe, Point(x, y), Point(x+w, y+h), Scalar(0, 255, 0), 4);    }    return resframe;}int main(int argc, char *argv[]){    Mat frame;    Mat tempframe;    Mat res;    int count = 0;    VideoCapture cap("D:/QT-Project/image/carMove.mp4");    while(cap.read(frame))    { count++; if(count == 1) {     res = MoveCheck(frame, frame); } else {     res = MoveCheck(tempframe, frame); } tempframe = frame.clone(); imshow("frame", frame);//原视频帧 imshow("res", res);//框选后的视频帧 waitKey(25);    }    return 0;}

2、车辆检测效果

 

 

四、帧差法存在不足之处

 

  • 相机抖动+起风了

 

        帧差法虽然能够检测出运动的车辆,但是不仅包括车辆,任何运动的物体都会检测出来,就像上图所示,一旦相机抖动或者突然起大风,运动的物体就多了起来(两帧差异的地方很多),因此就会出现上面那种情况。

😘The end ……🔚

原创不易,转载请标明出处。

对您有帮助的话可以一键三连,会持续更新的(嘻嘻)。