> 文档中心 > 面试季,覆盖70%-80%的面经基础题(java及安卓)-------数据库篇

面试季,覆盖70%-80%的面经基础题(java及安卓)-------数据库篇

  • MySQL基础架构
    • 连接器
    • 查询缓存(MySQL 8.0 版本后移除)
    • 分析器
    • 优化器
    • 执行器
    • MyISAM和InnoDB的区别
    • 字符集及校对规则
  • 索引
    • 为什么要使用索引?
    • 索引这么多优点,为什么不对表中的每一个列创建一个索引呢?
    • MySQL索引主要使用的两种索引结构
    • 覆盖索引
      • 什么是覆盖索引
      • 覆盖索引使用实例
    • 为什么索引能提高查询速度
    • 索引查询原则
      • 最左前缀原则
      • 注意避免冗余索引
  • 事务
    • 什么是事务?
    • 事务的四大特性(ACID)
    • 并发事务带来哪些问题?
    • 事务隔离级别有哪些?MySQL的默认隔离级别是?
    • 锁机制与InnoDB锁算法
    • 事物隔离级别和锁的关系
      • 一次封锁or两段锁?
      • Read Committed(读取提交内容)
      • Repeatable Read(可重读)
        • Serializable
  • 其他
    • 大表优化
      • 1. 限定数据的范围
      • 2. 读/写分离
      • 3. 垂直分区
      • 4. 水平分区
    • 解释一下什么是池化设计思想。什么是数据库连接池?为什么需要数据库连接池?
    • 分库分表之后,id 主键如何处理?
    • 一条SQL语句在MySQL中如何执行的
      • 查询语句
      • 更新语句(增加、更新、删除等)
    • 一条SQL语句执行得很慢的原因有哪些?
      • 一、分类讨论
      • 二、针对偶尔很慢的情况
        • 1、数据库在刷新脏页(flush)
        • 2、拿不到锁
      • 三、针对一直都这么慢的情况
        • 1、没用到索引
        • 2、数据库自己选错索引了
      • 四、总结
  • 查询函数
    • JOIN
      • INNER JOIN
      • LEFT JOIN
      • RIGHT JOIN
      • FULL JOIN

MySQL基础架构

MySQL 主要分为 Server 层和存储引擎层:

  • Server 层:主要包括连接器、查询缓存、分析器、优化器、执行器等,所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图,函数等,还有一个通用的日志模块 binglog 日志模块。
  • 存储引擎: 主要负责数据的存储和读取,采用可以替换的插件式架构,支持 InnoDB、MyISAM、Memory 等多个存储引擎,其中 InnoDB 引擎有自有的日志模块 redolog 模块。现在最常用的存储引擎是 InnoDB,它从 MySQL 5.5.5 版本开始就被当做默认存储引擎了。

连接器

连接器主要和身份认证和权限相关的功能相关,就好比一个级别很高的门卫一样。

主要负责用户登录数据库,进行用户的身份认证,包括校验账户密码,权限等操作,如果用户账户密码已通过,连接器会到权限表中查询该用户的所有权限,之后在这个连接里的权限逻辑判断都是会依赖此时读取到的权限数据,也就是说,后续只要这个连接不断开,即时管理员修改了该用户的权限,该用户也是不受影响的。

查询缓存(MySQL 8.0 版本后移除)

查询缓存主要用来缓存我们所执行的 SELECT 语句以及该语句的结果集。

连接建立后,执行查询语句的时候,会先查询缓存,MySQL 会先校验这个 sql 是否执行过,以 Key-Value 的形式缓存在内存中,Key 是查询预计,Value 是结果集。如果缓存 key 被命中,就会直接返回给客户端,如果没有命中,就会执行后续的操作,完成后也会把结果缓存起来,方便下一次调用。当然在真正执行缓存查询的时候还是会校验用户的权限,是否有该表的查询条件。

MySQL 查询不建议使用缓存,因为查询缓存失效在实际业务场景中可能会非常频繁,假如你对一个表更新的话,这个表上的所有的查询缓存都会被清空。对于不经常更新的数据来说,使用缓存还是可以的。

所以,一般在大多数情况下我们都是不推荐去使用查询缓存的。

MySQL 8.0 版本后删除了缓存的功能,官方也是认为该功能在实际的应用场景比较少,所以干脆直接删掉了。

分析器

MySQL 没有命中缓存,那么就会进入分析器,分析器主要是用来分析 SQL 语句是来干嘛的,分析器也会分为几步:

第一步,词法分析,一条 SQL 语句有多个字符串组成,首先要提取关键字,比如 select,提出查询的表,提出字段名,提出查询条件等等。做完这些操作后,就会进入第二步。

第二步,语法分析,主要就是判断你输入的 sql 是否正确,是否符合 MySQL 的语法。

完成这 2 步之后,MySQL 就准备开始执行了,但是如何执行,怎么执行是最好的结果呢?这个时候就需要优化器上场了。

优化器

优化器的作用就是它认为的最优的执行方案去执行,比如多个索引的时候该如何选择索引,多表查询的时候如何选择关联顺序等。可以说,经过了优化器之后可以说这个语句具体该如何执行就已经定下来。

执行器

当选择了执行方案后,MySQL 就准备开始执行了,首先执行前会校验该用户有没有权限,如果没有权限,就会返回错误信息,如果有权限,就会去调用引擎的接口,返回接口执行的结果。

MyISAM和InnoDB的区别

MyISAM是MySQL的默认数据库引擎(5.5版之前)。虽然性能极佳,而且提供了大量的特性,包括全文索引、压缩、空间函数等,但MyISAM不支持事务和行级锁,而且最大的缺陷就是崩溃后无法安全恢复。不过,5.5版本之后,MySQL引入了InnoDB(事务性数据库引擎),MySQL 5.5版本后默认的存储引擎为InnoDB。

大多数时候我们使用的都是 InnoDB 存储引擎,但是在某些情况下使用 MyISAM 也是合适的比如读密集的情况下。(如果你不介意 MyISAM 崩溃恢复问题的话)。

两者的对比:

  1. 是否支持行级锁 : MyISAM 只有表级锁(table-level locking),而InnoDB 支持行级锁(row-level locking)和表级锁,默认为行级锁。
  2. 是否支持事务和崩溃后的安全恢复: MyISAM 强调的是性能,每次查询具有原子性,其执行速度比InnoDB类型更快,但是不提供事务支持。但是InnoDB 提供事务支持事务,外部键等高级数据库功能。 具有事务(commit)、回滚(rollback)和崩溃修复能力(crash recovery capabilities)的事务安全(transaction-safe (ACID compliant))型表。
  3. 是否支持外键: MyISAM不支持,而InnoDB支持。
  4. 是否支持MVCC :仅 InnoDB 支持。应对高并发事务,MVCC比单纯的加锁更高效;MVCC只在 READ COMMITTEDREPEATABLE READ 两个隔离级别下工作;MVCC可以使用 乐观(optimistic)锁 和 悲观(pessimistic)锁来实现;各数据库中MVCC实现并不统一。

《MySQL高性能》上面有一句话这样写到:

不要轻易相信“MyISAM比InnoDB快”之类的经验之谈,这个结论往往不是绝对的。在很多我们已知场景中,InnoDB的速度都可以让MyISAM望尘莫及,尤其是用到了聚簇索引,或者需要访问的数据都可以放入内存的应用。

一般情况下我们选择 InnoDB 都是没有问题的,但是某些情况下你并不在乎可扩展能力和并发能力,也不需要事务支持,也不在乎崩溃后的安全恢复问题的话,选择MyISAM也是一个不错的选择。但是一般情况下,我们都是需要考虑到这些问题的。

字符集及校对规则

字符集指的是一种从二进制编码到某类字符符号的映射。校对规则则是指某种字符集下的排序规则。MySQL中每一种字符集都会对应一系列的校对规则。

MySQL采用的是类似继承的方式指定字符集的默认值,每个数据库以及每张数据表都有自己的默认值,他们逐层继承。比如:某个库中所有表的默认字符集将是该数据库所指定的字符集(这些表在没有指定字符集的情况下,才会采用默认字符集)

索引

为什么要使用索引?

  1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

  2. 可以大大加快数据的检索速度(大大减少的检索的数据量), 这也是创建索引的最主要的原因。

  3. 帮助服务器避免排序和临时表。

  4. 将随机IO变为顺序IO

  5. 可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。

索引这么多优点,为什么不对表中的每一个列创建一个索引呢?

  1. 当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

  2. 索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。

  3. 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。

MySQL索引主要使用的两种索引结构

MySQL索引使用的数据结构主要有BTree索引哈希索引 。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。

MySQL的BTree索引使用的是B树中的B+Tree,但对于主要的两种存储引擎的实现方式是不同的。

  • MyISAM: B+Tree叶节点的data域存放的是数据记录的地址。在索引检索的时候,首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引”。
  • InnoDB: 其数据文件本身就是索引文件。相比MyISAM索引文件和数据文件是分离的,InnoDB其表数据文件本身就是按B+Tree组织的一个索引结构,树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。这被称为“聚簇索引(或聚集索引)”。而其余的索引都作为辅助索引,辅助索引的data域存储相应记录主键的值而不是地址,这也是和MyISAM不同的地方。在根据主索引搜索时,直接找到key所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

覆盖索引

什么是覆盖索引

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道InnoDB存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢。覆盖索引就是把要查询出的列和索引对应,不做回表操作

覆盖索引使用实例

现在我创建了索引(username,age),我们执行下面的 sql 语句

select username, age from user where username = 'Java' and age = 22

在查询数据的时候:要查询出的列在叶子节点都存在,所以就不用回表。

为什么索引能提高查询速度

MySQL的基本存储结构是页(记录都存在页里边)

  • 各个数据页可以组成一个双向链表
  • 每个数据页中的记录又可以组成一个单向链表
    • 每个数据页都会为存储在它里面的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录
    • 以其他列(非主键)作为搜索条件:只能从最小记录开始依次遍历单链表中的每条记录。

所以说,如果我们写select * from user where indexname = 'xxx’这样没有进行任何优化的sql语句,默认会这样做:

  1. 定位到记录所在的页:需要遍历双向链表,找到所在的页
  2. 从所在的页内中查找相应的记录:由于不是根据主键查询,只能遍历所在页的单链表了

很明显,在数据量很大的情况下这样查找会很慢,这样的时间复杂度为O(n)。

索引做了些什么可以让我们查询加快速度呢?其实就是将无序的数据变成有序(相对)

很明显的是:没有用索引我们是需要遍历双向链表来定位对应的页,现在通过 “目录” 就可以很快地定位到对应的页上了!(二分查找,时间复杂度近似为O(logn))

索引查询原则

最左前缀原则

MySQL中的索引可以以一定顺序引用多列,这种索引叫作联合索引。如User表的name和city加联合索引就是(name,city),而最左前缀原则指的是,如果查询的时候查询条件精确匹配索引的左边连续一列或几列,则此列就可以被用到。如下:

select * from user where name=xx and city=xx ; //可以命中索引select * from user where name=xx ; // 可以命中索引select * from user where city=xx ; // 无法命中索引     

这里需要注意的是,查询的时候如果两个条件都用上了,但是顺序不同,如 city= xx and name =xx,那么现在的查询引擎会自动优化为匹配联合索引的顺序,这样是能够命中索引的。

由于最左前缀原则,在创建联合索引时,索引字段的顺序需要考虑字段值去重之后的个数,较多的放前面。ORDER BY子句也遵循此规则。

注意避免冗余索引

冗余索引指的是索引的功能相同,能够命中1就肯定能命中2,那么2就是冗余索引如(name,city )和(name )这两个索引就是冗余索引,能够命中后者的查询肯定是能够命中前者的,在大多数情况下,都应该尽量扩展已有的索引而不是创建新索引。

事务

什么是事务?

事务是逻辑上的一组操作,要么都执行,要么都不执行。

事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

事务的四大特性(ACID)

  1. 原子性(Atomicity): 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 一致性(Consistency): 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
  3. 隔离性(Isolation): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  4. 持久性(Durability): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

并发事务带来哪些问题?

在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对同一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。

  • 脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
  • 丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。
  • 不可重复读(Unrepeatable read): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
  • 幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。

不可重复读和幻读区别:

不可重复读的重点是修改比如多次读取一条记录发现其中某些列的值被修改,幻读的重点在于新增或者删除比如多次读取一条记录发现记录增多或减少了。

事务隔离级别有哪些?MySQL的默认隔离级别是?

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生
  • SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读
隔离级别 脏读 不可重复读 幻读
READ-UNCOMMITTED
READ-COMMITTED ×
REPEATABLE-READ × ×
SERIALIZABLE × × ×

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。这里需要注意的是:与 SQL 标准不同的地方在于 InnoDB 存储引擎在 REPEATABLE-READ(可重读) 事务隔离级别下使用的是Next-Key Lock 锁算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server) 是不同的。所以说InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要求,即达到了 SQL标准的 SERIALIZABLE(可串行化) 隔离级别。因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是 READ-COMMITTED(读取提交内容) ,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读) 并不会有任何性能损失。InnoDB 存储引擎在 分布式事务 的情况下一般会用到 SERIALIZABLE(可串行化) 隔离级别。

锁机制与InnoDB锁算法

几个问题

  • 对数据库添加、删除、修改都要加锁
  • MySQL 为了满足事务的隔离性,必须在 commit 才释放锁。
  • 就算是“读未提交”,也要等到 commit 了再释放锁。
  • MySQL 的行锁,分为X锁和S锁,允许多个线程同时读,但只允许一个线程写,既支持并发提高性能,又保证了并发安全。
  • 意向锁:行锁是行级别的,粒度比较小,在拿行锁之前,必须先拿一个假的表锁,表示你想去锁住表里的某一行或者多行记录。这样,MySQL 在判断表里有没有记录被锁定,就不需要遍历整张表了,它只需要看看,有没有人拿了这个假的表锁。

MyISAM和InnoDB存储引擎使用的锁:

  • MyISAM采用表级锁(table-level locking)。
  • InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁

表级锁和行级锁对比:

  • 表级锁: MySQL中锁定 粒度最大 的一种锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。其锁定粒度最大,触发锁冲突的概率最高,并发度最低,MyISAM和 InnoDB引擎都支持表级锁。
  • 行级锁: MySQL中锁定 粒度最小 的一种锁,只针对当前操作的行进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。

InnoDB存储引擎的锁的算法有三种:

  • Record lock:单个行记录上的锁
  • Gap lock:间隙锁,锁定一个范围,不包括记录本身
  • Next-key lock:record+gap 锁定一个范围,包含记录本身

相关知识点:

  1. Innodb对于行的查询使用next-key lock
  2. Next-locking keying为了解决Phantom Problem幻读问题
  3. 当查询的索引含有唯一属性时,将next-key lock降级为record key
  4. Gap锁设计的目的是为了阻止多个事务将记录插入到同一范围内,而这会导致幻读问题的产生
  5. 有两种方式显式关闭gap锁:(除了外键约束和唯一性检查外,其余情况仅使用record lock)
    1. 将事务隔离级别设置为RC
    2. 将参数innodb_locks_unsafe_for_binlog设置为1

事物隔离级别和锁的关系

一次封锁or两段锁?

因为有大量的并发访问,为了预防死锁,一般应用中推荐使用一次封锁法,就是在方法的开始阶段,已经预先知道会用到哪些数据,然后全部锁住,在方法运行之后,再全部解锁。这种方式可以有效的避免循环死锁,但在数据库中却不适用,因为在事务开始阶段,数据库并不知道会用到哪些数据。

数据库遵循的是两段锁协议,将事务分成两个阶段,加锁阶段和解锁阶段(所以叫两段锁)

  • 加锁阶段:在该阶段可以进行加锁操作。在对任何数据进行读操作之前要申请并获得S锁(共享锁,其它事务可以继续加共享锁,但不能加排它锁),在进行写操作之前要申请并获得X锁(排它锁,其它事务不能再获得任何锁)。加锁不成功,则事务进入等待状态,直到加锁成功才继续执行。
  • 解锁阶段:当事务释放了一个封锁以后,事务进入解锁阶段,在该阶段只能进行解锁操作不能再进行加锁操作。

Read Committed(读取提交内容)

在RC级别中,数据的读取都是不加锁的,但是数据的写入、修改和删除是需要加锁的。

当事物对有索引的行进行操作时,MySQL只对该行进行加锁。但当一个条件无法通过索引快速过滤,存储引擎层面就会将所有记录加锁后返回,再由MySQL Server层进行过滤。

但在实际使用过程当中,MySQL做了一些改进,在MySQL Server过滤条件,发现不满足后,会调用unlock_row方法,把不满足条件的记录释放锁 (违背了二段锁协议的约束)。这样做,保证了最后只会持有满足条件记录上的锁,但是每条记录的加锁操作还是不能省略的。可见即使是MySQL,为了效率也是会违反规范的。

这种情况同样适用于MySQL的默认隔离级别Repeatable Read。所以对一个数据量很大的表做批量修改的时候,如果无法使用相应的索引,MySQL Server过滤数据的的时候特别慢,就会出现虽然没有修改某些行的数据,但是它们还是被锁住了的现象。

Repeatable Read(可重读)

不可重复读和幻读的区别

很多人容易搞混不可重复读和幻读,确实这两者有些相似。但不可重复读重点在于update和delete,而幻读的重点在于insert。

如果使用锁机制来实现这两种隔离级别,在可重复读中,该SQL第一次读取到数据后,就将这些数据加锁,其它事务无法修改这些数据,就可以实现可重复读了。但这种方法却无法锁住insert的数据,所以当事务A先前读取了数据,或者修改了全部数据,事务B还是可以insert数据提交,这时事务A就会发现莫名其妙多了一条之前没有的数据,这就是幻读,不能通过行锁来避免。需要Serializable隔离级别 ,读用读锁,写用写锁,读锁和写锁互斥,这么做可以有效的避免幻读、不可重复读、脏读等问题,但会极大的降低数据库的并发能力。

所以说不可重复读和幻读最大的区别,就在于如何通过锁机制来解决他们产生的问题。

上文说的,是使用悲观锁机制来处理这两种问题,但是MySQL、ORACLE、PostgreSQL等成熟的数据库,出于性能考虑,都是使用了以乐观锁为理论基础的MVCC(多版本并发控制)来避免这两种问题。

悲观锁和乐观锁

  • 悲观锁

正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)。

在悲观锁的情况下,为了保证事务的隔离性,就需要一致性锁定读。读取数据时给加锁,其它事务无法修改这些数据。修改删除数据时也要加锁,其它事务无法读取这些数据。

  • 乐观锁

相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

要说明的是,MVCC的实现没有固定的规范,每个数据库都会有不同的实现方式,这里讨论的是InnoDB的MVCC。

MVCC(多版本并发控制)在MySQL的InnoDB中的实现

在InnoDB中,会在每行数据后添加两个额外的隐藏的值来实现MVCC,这两个值一个记录这行数据何时被创建,另外一个记录这行数据何时过期(或者被删除)。 在实际操作中,存储的并不是时间,而是事务的版本号,每开启一个新事务,事务的版本号就会递增。 在可重读Repeatable reads事务隔离级别下:

  • SELECT时,读取创建版本号当前事务版本号。
  • INSERT时,保存当前事务版本号为行的创建版本号
  • DELETE时,保存当前事务版本号为行的删除版本号
  • UPDATE时,插入一条新纪录,保存当前事务版本号为行创建版本号,同时保存当前事务版本号到原来删除的行

通过MVCC,虽然每行记录都需要额外的存储空间,更多的行检查工作以及一些额外的维护工作,但可以减少锁的使用,大多数读操作都不用加锁,读数据操作很简单,性能很好,并且也能保证只会读取到符合标准的行,也只锁住必要行。并且在MySQL的RR级别中,是解决了幻读的读问题的。

“读”与“读”的区别

可能有读者会疑惑,事务的隔离级别其实都是对于读数据的定义,但到了这里,就被拆成了读和写两个模块来讲解。这主要是因为MySQL中的读,和事务隔离级别中的读,是不一样的。

我们且看,在RR级别中,通过MVCC机制,虽然让数据变得可重复读,但我们读到的数据可能是历史数据,是不及时的数据,不是数据库当前的数据!这在一些对于数据的时效特别敏感的业务中,就很可能出问题。

对于这种读取历史数据的方式,我们叫它快照读 (snapshot read),而读取数据库当前版本数据的方式,叫当前读 (current read)。很显然,在MVCC中:

  • 快照读:就是select
    • select * from table ….;
  • 当前读:特殊的读操作,插入/更新/删除操作,属于当前读,处理的都是当前的数据,需要加锁。
    • select * from table where ? lock in share mode;
    • select * from table where ? for update;
    • insert;
    • update ;
    • delete;

事务的隔离级别实际上都是定义了当前读的级别,MySQL为了减少锁处理(包括等待其它锁)的时间,提升并发能力,引入了快照读的概念,使得select不用加锁。而update、insert这些“当前读”,就需要另外的模块来解决了。

写(”当前读”)

事务的隔离级别中虽然只定义了读数据的要求,实际上这也可以说是写数据的要求。上文的“读”,实际是讲的快照读;而这里说的“写”就是当前读了。为了解决当前读中的幻读问题,MySQL事务使用了Next-Key锁。

Next-Key锁是行锁和GAP(间隙锁)的合并,行锁上文已经介绍了,接下来说下GAP间隙锁。

RR级别中,事务A在update后加锁,事务B无法插入新数据,这样事务A在update前后读的数据保持一致,避免了幻读。这个锁,就是Gap锁。

MySQL是这么实现的:

InnoDB使用的是聚集索引,就要维护一个索引字段和主键id的树状结构,并保持顺序排列。Innodb将数据分成几个区间,在update时,不仅用行锁锁住了相应的数据行;同时也在两边的区间(到上一条数据的区间+到下一条数据的区间,如果没有数据则锁infinity)都加入了gap锁。这样事务B就无法在这个两个区间insert进新数据。

如果使用的是没有索引的字段,那么会给全表加入gap锁。同时,它不能像上文中行锁一样经过MySQL Server过滤自动解除不满足条件的锁,因为没有索引,则这些字段也就没有排序,也就没有区间。除非该事务提交,否则其它事务无法插入任何数据。

Serializable

这个级别很简单,读加共享锁,写加排他锁,读写互斥。使用的悲观锁的理论,实现简单,数据更加安全,但是并发能力非常差。如果你的业务并发的特别少或者没有并发,同时又要求数据及时可靠的话,可以使用这种模式。

这里要吐槽一句,不要看到select就说不会加锁了,在Serializable这个级别,还是会加锁的

其他

大表优化

当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:

1. 限定数据的范围

务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内;

2. 读/写分离

经典的数据库拆分方案,主库负责写,从库负责读;

3. 垂直分区

根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。

简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。

  • 垂直拆分的优点: 可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。
  • 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂;

4. 水平分区

保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。

水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。

水平拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库

水平拆分能够支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨节点Join性能较差,逻辑复杂。尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。

下面补充一下数据库分片的两种常见方案:

  • 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
  • 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。

解释一下什么是池化设计思想。什么是数据库连接池?为什么需要数据库连接池?

池化设计应该不是一个新名词。我们常见的如java线程池、jdbc连接池、redis连接池等就是这类设计的代表实现。这种设计会初始预设资源,解决的问题就是抵消每次获取资源的消耗,如创建线程的开销,获取远程连接的开销等。就好比你去食堂打饭,打饭的大妈会先把饭盛好几份放那里,你来了就直接拿着饭盒加菜即可,不用再临时又盛饭又打菜,效率就高了。除了初始化资源,池化设计还包括如下这些特征:池子的初始值、池子的活跃值、池子的最大值等,这些特征可以直接映射到java线程池和数据库连接池的成员属性中。

数据库连接本质就是一个 socket 的连接。数据库服务端还要维护一些缓存和用户权限信息之类的,所以占用了一些内存。我们可以把数据库连接池是看做是维护的数据库连接的缓存,以便将来需要对数据库的请求时可以重用这些连接。为每个用户打开和维护数据库连接,尤其是对动态数据库驱动的网站应用程序的请求,既昂贵又浪费资源。**在连接池中,创建连接后,将其放置在池中,并再次使用它,因此不必建立新的连接。如果使用了所有连接,则会建立一个新连接并将其添加到池中。 **连接池还减少了用户必须等待建立与数据库的连接的时间。

分库分表之后,id 主键如何处理?

因为要是分成多个表之后,每个表都是从 1 开始累加,这样是不对的,我们需要一个全局唯一的 id 来支持。

生成全局 id 有下面这几种方式:

  • UUID:不适合作为主键,因为太长了,并且无序不可读,查询效率低。比较适合用于生成唯一的名字的标示比如文件的名字。
  • 数据库自增 id : 两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。这种方式生成的 id 有序,但是需要独立部署数据库实例,成本高,还会有性能瓶颈。
  • 利用 redis 生成 id : 性能比较好,灵活方便,不依赖于数据库。但是,引入了新的组件造成系统更加复杂,可用性降低,编码更加复杂,增加了系统成本。
  • Twitter的snowflake算法 :Github 地址:https://github.com/twitter-archive/snowflake。
  • 美团的Leaf分布式ID生成系统 :Leaf 是美团开源的分布式ID生成器,能保证全局唯一性、趋势递增、单调递增、信息安全,里面也提到了几种分布式方案的对比,但也需要依赖关系数据库、Zookeeper等中间件。

一条SQL语句在MySQL中如何执行的

查询语句

权限校验→查询缓存→分析器→优化器→权限校验→执行器→引擎

select * from tb_student A where A.age='18' and A.name=' 张三 ';
  1. 先检查该语句是否有权限,如果没有权限,直接返回错误信息,如果有权限,在 MySQL8.0 版本以前,会先查询缓存,以这条 sql 语句为 key 在内存中查询是否有结果,如果有直接缓存,如果没有,执行下一步。

  2. 通过分析器进行词法分析,提取 sql 语句的关键元素,比如提取上面这个语句是查询 select,提取需要查询的表名为 tb_student,需要查询所有的列,查询条件是这个表的 id=‘1’。然后判断这个 sql 语句是否有语法错误,比如关键词是否正确等等,如果检查没问题就执行下一步。

  3. 接下来就是优化器进行确定执行方案,上面的 sql 语句,可以有两种执行方案:

    1. 先查询学生表中姓名为“张三”的学生,然后判断是否年龄是 18
    2. 先找出学生中年龄 18 岁的学生,然后再查询姓名为“张三”的学生。

    那么优化器根据自己的优化算法进行选择执行效率最好的一个方案(优化器认为,有时候不一定最好)。那么确认了执行计划后就准备开始执行了。

  4. 进行权限校验,如果没有权限就会返回错误信息,如果有权限就会调用数据库引擎接口,返回引擎的执行结果。

更新语句(增加、更新、删除等)

分析器→权限校验→执行器→引擎→redo log prepare→binlog→redo log commit

update tb_student A set A.age='19' where A.name=' 张三 ';

我们来给张三修改下年龄,在实际数据库肯定不会设置年龄这个字段的,不然要被技术负责人打的。其实条语句也基本上会沿着上一个查询的流程走,只不过执行更新的时候肯定要记录日志啦,这就会引入日志模块了,MySQL 自带的日志模块式 binlog(归档日志)(它记录了数据库上的所有改变,并以二进制的形式保存在磁盘中;它可以用来查看数据库的变更历史、数据库增量备份和恢复、Mysql的复制,记录的是语句的运行逻辑,如“给id=2这一行的C字段加上1”) ,所有的存储引擎都可以使用,我们常用的 InnoDB 引擎还自带了一个日志模块 redo log(重做日志)(记录的是新数据的备份,在某个数据页上做了什么修改),我们就以 InnoDB 模式下来探讨这个语句的执行流程。流程如下:

  1. 先查询到张三这一条数据,如果有缓存,也是会用到缓存。
  2. 然后拿到查询的语句,把 age 改为 19,然后调用引擎 API 接口,写入这一行数据,InnoDB 引擎把数据保存在内存中,同时记录 redo log,此时 redo log 进入 prepare 状态,然后告诉执行器,执行完成了,随时可以提交。
  3. 执行器收到通知后记录 binlog,然后调用引擎接口,提交 redo log 为提交状态。
  4. 更新完成。

为什么要用两个日志模块,用一个日志模块不行吗?

这是因为最开始 MySQL 并没与 InnoDB 引擎( InnoDB 引擎是以插件形式插入 MySQL 的) ,MySQL 自带的引擎是 MyISAM,但是我们知道 redo log 是 InnoDB 引擎特有的,其他存储引擎都没有,这就导致会没有 crash-safe 的能力(crash-safe 的能力即使数据库发生异常重启,之前提交的记录都不会丢失),binlog 日志只能用来归档。

并不是说只用一个日志模块不可以,只是 InnoDB 引擎就是通过 redo log 来支持事务的。那么,又会有同学问,我用两个日志模块,但是不要这么复杂行不行,为什么 redo log 要引入 prepare 预提交状态?这里我们用反证法来说明下为什么要这么做?

  • 先写 redo log 直接提交,然后写 binlog,假设写完 redo log 后,机器挂了,binlog 日志没有被写入,那么机器重启后,这台机器会通过 redo log 恢复数据,但是这个时候 binlog 并没有记录该数据,后续进行机器备份的时候,就会丢失这一条数据,同时主从同步也会丢失这一条数据。
  • 先写 binlog,然后写 redo log,假设写完了 binlog,机器异常重启了,由于没有 redo log,本机是无法恢复这一条记录的,但是 binlog 又有记录,那么和上面同样的道理,就会产生数据不一致的情况。

如果采用 redo log 两阶段提交的方式就不一样了,写完 binlog 后,然后再提交 redo log 就会防止出现上述的问题,从而保证了数据的一致性。那么问题来了,有没有一个极端的情况呢?假设 redo log 处于预提交状态,binglog 也已经写完了,这个时候发生了异常重启会怎么样呢? 这个就要依赖于 MySQL 的处理机制了,MySQL 的处理过程如下:

  • 判断 redo log 是否完整,如果判断是完整的,就立即提交。
  • 如果 redo log 只是预提交但不是 commit 状态,这个时候就会去判断 binlog 是否完整,如果完整就提交 redo log,不完整就回滚事务。

这样就解决了数据一致性的问题。

一条SQL语句执行得很慢的原因有哪些?

一、分类讨论

一条 SQL 语句执行的很慢,那是每次执行都很慢呢?还是大多数情况下是正常的,偶尔出现很慢呢?所以我觉得,我们还得分以下两种情况来讨论。

1、大多数情况是正常的,只是偶尔会出现很慢的情况。

2、在数据量不变的情况下,这条SQL语句一直以来都执行的很慢。

针对这两种情况,我们来分析下可能是哪些原因导致的。

二、针对偶尔很慢的情况

一条 SQL 大多数情况正常,偶尔才能出现很慢的情况,针对这种情况,我觉得这条SQL语句的书写本身是没什么问题的,而是其他原因导致的,那会是什么原因呢?

1、数据库在刷新脏页(flush)

当我们要往数据库插入一条数据、或者要更新一条数据的时候,我们知道数据库会在内存中把对应字段的数据更新了,但是更新之后,这些更新的字段并不会马上同步持久化到磁盘中去,而是把这些更新的记录写入到 redo log 日记中去,等到空闲的时候,在通过 redo log 里的日记把最新的数据同步到磁盘中去。

当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”。

刷脏页有下面4种场景(后两种不用太关注“性能”问题):

  • **redo log写满了:**redo log 里的容量是有限的,如果数据库一直很忙,更新又很频繁,这个时候 redo log 很快就会被写满了,这个时候就没办法等到空闲的时候再把数据同步到磁盘的,只能暂停其他操作,全身心来把数据同步到磁盘中去的,而这个时候,就会导致我们平时正常的SQL语句突然执行的很慢,所以说,数据库在在同步数据到磁盘的时候,就有可能导致我们的SQL语句执行的很慢了。
  • **内存不够用了:**如果一次查询较多的数据,恰好碰到所查数据页不在内存中时,需要申请内存,而此时恰好内存不足的时候就需要淘汰一部分内存数据页,如果是干净页,就直接释放,如果恰好是脏页就需要刷脏页。
  • **MySQL 认为系统“空闲”的时候:**这时系统没什么压力。
  • **MySQL 正常关闭的时候:**这时候,MySQL 会把内存的脏页都 flush 到磁盘上,这样下次 MySQL 启动的时候,就可以直接从磁盘上读数据,启动速度会很快。

2、拿不到锁

这个就比较容易想到了,我们要执行的这条语句,刚好这条语句涉及到的,别人在用,并且加锁了,我们拿不到锁,只能慢慢等待别人释放锁了。或者,表没有加锁,但要使用到的某个一行被加锁了,这个时候,我也没办法啊。

如果要判断是否真的在等待锁,我们可以用 show processlist这个命令来查看当前的状态哦,这里我要提醒一下,有些命令最好记录一下,反正,我被问了好几个命令,都不知道怎么写,呵呵。

下来我们来访分析下第二种情况,我觉得第二种情况的分析才是最重要的

三、针对一直都这么慢的情况

如果在数据量一样大的情况下,这条 SQL 语句每次都执行的这么慢,那就就要好好考虑下你的 SQL 书写了,下面我们来分析下哪些原因会导致我们的 SQL 语句执行的很不理想。

我们先来假设我们有一个表,表里有下面两个字段,分别是主键 id,和两个普通字段 c 和 d。

mysql> CREATE TABLE `t` (  `id` int(11) NOT NULL,  `c` int(11) DEFAULT NULL,  `d` int(11) DEFAULT NULL,  PRIMARY KEY (`id`)) ENGINE=InnoDB;

1、没用到索引

(1)字段没有索引

没有用上索引,我觉得这个原因是很多人都能想到的,例如你要查询这条语句

select * from t where 100 < c and c < 100000;

刚好你的 c 字段上没有索引,那么抱歉,只能走全表扫描了,你就体验不会索引带来的乐趣了,所以,这回导致这条查询语句很慢。

(2)字段有索引,但却没有用索引

好吧,这个时候你给 c 这个字段加上了索引,然后又查询了一条语句

select * from t where c - 1 = 1000;

我想问大家一个问题,这样子在查询的时候会用索引查询吗?

答是不会,如果我们在字段的左边做了运算,那么很抱歉,在查询的时候,就不会用上索引了,所以呢,大家要注意这种字段上有索引,但由于自己的疏忽,导致系统没有使用索引的情况了。

正确的查询应该如下

select * from t where c = 1000 + 1;

有人可能会说,右边有运算就能用上索引?难道数据库就不会自动帮我们优化一下,自动把 c - 1=1000 自动转换为 c = 1000+1。

不好意思,确实不会帮你,所以,你要注意了。

(3)函数操作导致没有用上索引

如果我们在查询的时候,对字段进行了函数操作,也是会导致没有用上索引的,例如

select * from t where pow(c,2) = 1000;

这里我只是做一个例子,假设函数 pow 是求 c 的 n 次方,实际上可能并没有 pow(c,2)这个函数。其实这个和上面在左边做运算也是很类似的。

所以呢,一条语句执行都很慢的时候,可能是该语句没有用上索引了,不过具体是啥原因导致没有用上索引的呢,你就要会分析了,我上面列举的三个原因,应该是出现的比较多的吧。

2、数据库自己选错索引了

我们在进行查询操作的时候,例如

select * from t where 100 < c and c < 100000;

我们知道,主键索引和非主键索引是有区别的,主键索引存放的值是整行字段的数据,而非主键索引上存放的值不是整行字段的数据,而是存放主键字段的值

也就是说,我们如果走 c 这个字段的索引的话,最后会查询到对应主键的值,然后,再根据主键的值走主键索引,查询到整行数据返回。

好吧扯了这么多,其实我就是想告诉你,就算你在 c 字段上有索引,系统也并不一定会走 c 这个字段上的索引,而是有可能会直接扫描扫描全表,找出所有符合 100 < c and c < 100000 的数据。

为什么会这样呢?

其实是这样的,系统在执行这条语句的时候,会进行预测:究竟是走 c 索引扫描的行数少,还是直接扫描全表扫描的行数少呢?显然,扫描行数越少当然越好了,因为扫描行数越少,意味着I/O操作的次数越少。

如果是扫描全表的话,那么扫描的次数就是这个表的总行数了,假设为 n;而如果走索引 c 的话,我们通过索引 c 找到主键之后,还得再通过主键索引来找我们整行的数据,也就是说,需要走两次索引。而且,我们也不知道符合 100 c < and c < 10000 这个条件的数据有多少行,万一这个表是全部数据都符合呢?这个时候意味着,走 c 索引不仅扫描的行数是 n,同时还得每行数据走两次索引。

所以呢,系统是有可能走全表扫描而不走索引的。那系统是怎么判断呢?

判断来源于系统的预测,也就是说,如果要走 c 字段索引的话,系统会预测走 c 字段索引大概需要扫描多少行。如果预测到要扫描的行数很多,它可能就不走索引而直接扫描全表了。

那么问题来了,系统是怎么预测判断的呢?

系统是通过索引的区分度来判断的,一个索引上不同的值越多,意味着出现相同数值的索引越少,意味着索引的区分度越高。我们也把区分度称之为基数,即区分度越高,基数越大。所以呢,基数越大,意味着符合 100 < c and c < 10000 这个条件的行数越少。

所以呢,一个索引的基数越大,意味着走索引查询越有优势。

那么问题来了,怎么知道这个索引的基数呢?

系统当然是不会遍历全部来获得一个索引的基数的,代价太大了,索引系统是通过遍历部分数据,也就是通过采样的方式,来预测索引的基数的。

扯了这么多,重点的来了,居然是采样,那就有可能出现失误的情况,也就是说,c 这个索引的基数实际上是很大的,但是采样的时候,却很不幸,把这个索引的基数预测成很小。例如你采样的那一部分数据刚好基数很小,然后就误以为索引的基数很小。然后就呵呵,系统就不走 c 索引了,直接走全部扫描了

所以呢,说了这么多,得出结论:由于统计的失误,导致系统没有走索引,而是走了全表扫描,而这,也是导致我们 SQL 语句执行的很慢的原因。

这里我声明一下,系统判断是否走索引,扫描行数的预测其实只是原因之一,这条查询语句是否需要使用使用临时表、是否需要排序等也是会影响系统的选择的。

不过呢,我们有时候也可以通过强制走索引的方式来查询,例如

select * from t force index(a) where c < 100 and c < 100000;

我们也可以通过

show index from t;

来查询索引的基数和实际是否符合,如果和实际很不符合的话,我们可以重新来统计索引的基数,可以用这条命令

analyze table t;

来重新统计分析。

既然会预测错索引的基数,这也意味着,当我们的查询语句有多个索引的时候,系统有可能也会选错索引哦,这也可能是 SQL 执行的很慢的一个原因。

好吧,就先扯这么多了,你到时候能扯出这么多,我觉得已经很棒了,下面做一个总结。

四、总结

以上是我的总结与理解,最后一个部分,我怕很多人不大懂数据库居然会选错索引,所以我详细解释了一下,下面我对以上做一个总结。

一个 SQL 执行的很慢,我们要分两种情况讨论:

  1. 大多数情况下很正常,偶尔很慢,则有如下原因
    1. 数据库在刷新脏页,例如 redo log 写满了需要同步到磁盘。
    2. 执行的时候,遇到锁,如表锁、行锁。
  2. 这条 SQL 语句一直执行的很慢,则有如下原因。
    1. 没有用上索引:例如该字段没有索引;由于对字段进行运算、函数操作导致无法用索引。
    2. 数据库选错了索引。

查询函数

JOIN

当表之间有外键引用时,可以通过join在不重复每个表中的所有数据的情况下,把表间的数据交叉捆绑在一起。

INNER JOIN

如果表中有至少一个匹配,则返回行

SELECT column_name(s)FROM table_name1INNER JOIN table_name2 ON table_name1.column_name=table_name2.column_name

等价于

SELECT column_name(s)FROM table_name1, table_name2 WHERE table_name1.column_name=table_name2.column_name

LEFT JOIN

从左表 (table_name1) 那里返回所有的行,即使在右表 (table_name2) 中没有匹配的行。

SELECT column_name(s)FROM table_name1LEFT JOIN table_name2 ON table_name1.column_name=table_name2.column_name

RIGHT JOIN

从右表 (table_name2) 那里返回所有的行,即使在左表 (table_name1) 中没有匹配的行。

SELECT column_name(s)FROM table_name1RIGHT JOIN table_name2 ON table_name1.column_name=table_name2.column_name

FULL JOIN

只要其中某个表存在匹配,FULL JOIN 关键字就会返回行。

SELECT column_name(s)FROM table_name1FULL JOIN table_name2 ON table_name1.column_name=table_name2.column_name