一、53. 最大子数组和

class Solution: def maxSubArray(self, nums: List[int]) -> int: if len(nums) == 1: return nums[0] preSum = [0] * (len(nums)+1) for idx, n in enumerate(nums): preSum[idx+1] = preSum[idx] + n res = -inf for idx, p in enumerate(preSum): for i in range(idx): res = max(res, p-preSum[i]) return resclass Solution: def maxSubArray(self, nums): if len(nums) == 1: return nums[0] res = -inf preSum = 0 minPreSum = 0 for n in nums: preSum += n res = max(res, preSum - minPreSum) minPreSum = min(minPreSum, preSum) return res
- 思路2:dp
- 定义dp[i],表示以nums[i]j结尾的最大子数组和。当来到第i个位置,有两种可能
- 以dp[i] = nums[i],单独成一个子数组
- dp[i] = dp[i-1] + nums[i],这种情况需要dp[i-1] >=0
- 代码
class Solution: def maxSubArray(self, nums): dp =[0] * len(nums) dp[0] = nums[0] for i in range(1, len(nums)): dp[i] = max(dp[i-1], 0) + nums[i] return max(dp)
二、56. 合并区间

- 思路:先将intervals中的区间按起始排序。这样每个新来的区间就不用和已经确定好没要交集的区间比较了。
- 代码
class Solution: def merge(self, intervals: List[List[int]]) -> List[List[int]]: intervals.sort(key=lambda p:p[0]) res = [] for p in intervals: if res and p[0] <= res[-1][1]: res[-1][1] = max(ans[-1][1], p[1]) else: res.append(p) return res
三、189. 轮转数组

- 思路:这道题可以推公式出来,如果不想推的话直接根据结果反转。注意不要使用切片或者列表的insert语法。这都会产生额外的空间
- 代码1:
class Solution: def rotate(self, nums: List[int], k: int) -> None: def reverse(i, j): while i < j: nums[i], nums[j] = nums[j], nums[i] i += 1 j -= 1 n = len(nums) k %= n reverse(0, n-1) reverse(0, k-1) reverse(k, n-1)
def rotate2(self, nums: List[int], k: int) -> None: n = len(nums) k %= n nums.reverse() nums[:k] = reversed(nums[:k]) nums[k:] = reversed(nums[k:])
四、238. 除自身以外数组的乘积

- 思路:前后缀分解。维护一个pre[i]:表示0到i-1的乘积,suf[i]表示i+1到n-1的乘积。
- 代码
class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: n = len(nums) pre = [1]*n for i in range(1, n): pre[i] = pre[i-1] * nums[i-1] suf = [1]*n for i in range(n-2, -1, -1): suf[i] = suf[i+1] * nums[i+1] return [p * s for p, s in zip(pre, suf)]
五、41. 缺失的第一个正数

class Solution: def firstMissingPositive(self, nums: List[int]) -> int: n = len(nums) for i in range(n): while 1 <= nums[i] <= n and nums[nums[i] - 1] != nums[i]: nums[nums[i] - 1], nums[i] = nums[i], nums[nums[i] - 1] for i in range(n): if nums[i] != i + 1: return i + 1 return n + 1