> 技术文档 > 新手小白如何从零开始构建Web3区块链?_web3教程

新手小白如何从零开始构建Web3区块链?_web3教程

在这里插入图片描述


包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!

在这里插入图片描述

web3 是一个非常流行的概念,它的基础是区块链技术。区块链技术是一种分布式账本技术,它的特点是去中心化、不可篡改、安全可靠。区块链技术的应用场景非常广泛,比如数字货币、智能合约、供应链金融等等。
网上关于区块链的资料非常多,但是从零开始构建的资料却很少。本文就是一篇从零开始构建区块链的文章,希望能帮助你快速入门区块链技术。
由于本文不是科普文章,而是直接带你实现,从而加深理解,因此建议你对区块链技术有一定的了解。如果你对区块链技术还不了解,可以先看一些区块链的基础知识,比如区块链的概念、区块链的特点、区块链的应用等等。
本文使用Python语言来实现区块链,Python 是一种非常流行的编程语言,它的语法简单,非常适合初学者。如果你对 Python 不熟悉也没关系,相信我他真的很容易懂。如果你实在不懂,也可以让 chatgpt 给你解释甚至直接翻译为其他语言。

  • 为了方便大家直接运行,我提供了相对完整的代码示例。强烈大家边看看在本地跟着一起写,一起运行查看效果,只有动手才可能真正理解其核心。并且尽可能地根据我的思路和代码默写,而不是抄写一遍。


基础

我们可以实现一个简单的区块链类来模拟区块链的基本功能。
从数据结构上来说,区块链本质上是一个链表结构,每个区块包含一个索引、时间戳、数据、前一个区块的哈希值和当前区块的哈希值。区块链中的第一个区块叫做创世区块,它的前一个区块的哈希值是 0。
首先我们先定义几个类,分别是 Block 类和 Blockchain 类。其中 Block 类表示区块,Blockchain 类表示区块链。Blockchain 会引用 Block 类。
  • Block 类:包含索引、时间戳、数据、前一个区块的哈希值和当前区块的哈希值。
  • Blockchain 类:包含一个区块链列表,初始化时创建创世区块,支持新块的方法。
关于哈希计算,可以使用 SHA-256 算法,算法细节不是本文的重点,你可以直接使用 Python 的 hashlib 库来计算。
import hashlib import time class Block: def __init__(self, index, timestamp, data, previous_hash):  self.index = index  self.timestamp = timestamp  self.data = data  self.previous_hash = previous_hash  self.hash = self.calculate_hash() def calculate_hash(self):  sha = hashlib.sha256()  sha.update(f\"{self.index}{self.timestamp}{self.data}{self.previous_hash}\".encode(\'utf-8\'))  return sha.hexdigest() class Blockchain: def __init__(self):  self.chain = [self.create_genesis_block()] def create_genesis_block(self):  return Block(0, time.time(), \"Genesis Block\", \"0\") def get_latest_block(self):  return self.chain[-1] # 使用示例 blockchain = Blockchain() blockchain.add_block(Block(1, time.time(), \"Block 1 Data\", blockchain.get_latest_block().hash)) blockchain.add_block(Block(2, time.time(), \"Block 2 Data\", blockchain.get_latest_block().hash)) # 打印区块链 for block in blockchain.chain: print(f\"Index: {block.index}\") print(f\"Timestamp: {block.timestamp}\") print(f\"Data: {block.data}\") print(f\"Previous Hash: {block.previous_hash}\") 

交易与挖矿

另一个重要的基础概念就是交易(Transaction)。交易本质上是一种数据结构,包含发送者、接收者和金额等用来描述交易的信息即可。交易是区块链中的基本单位,区块链中的每个区块都包含一系列交易。
区块链中的挖矿是另外一个非常重要的概念,挖矿的过程是通过计算一个符合条件的哈希值来创建新的区块。挖矿的过程是一个计算密集型的过程,需要大量的计算资源。
为什么把两个放在一起?因为我觉得可以将挖矿看作是一种特殊的交易,这种交易是没有发送者的,只有接收者,接收者就是矿工,矿工通过挖矿来获得奖励。

为了在区块链中添加挖矿和转账功能,我们需要进行以下步骤:

1.定义交易类:包含发送者、接收者和金额。
  • 定义 Transaction 类:包含发送者、接收者和金额。
class Transaction: def __init__(self, sender, receiver, amount):  self.sender = sender  self.receiver = receiver  self.amount = amount 
2. 修改区块类:包含交易列表和挖矿奖励。
  • 修改 Block 类:计算哈希值时包含交易信息(前面计算哈希的时候没有对交易信息进行哈希,因此前面还没有交易信息)。
class Block: def __init__(self, index, timestamp, transactions, previous_hash):  self.transactions = transactions  # ... def calculate_hash(self):  sha = hashlib.sha256()  transactions_str = \"\".join([f\"{tx.sender}{tx.receiver}{tx.amount}\" for tx in self.transactions])  sha.update(f\"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}\".encode(\'utf-8\'))  return sha.hexdigest() 
3. 修改区块链类:添加挖矿和创建交易的方法。
  • 由于挖矿就是没有发送者的交易,因此创建一个没有 sender 的交易,并将其加入到区块的交易列表中即可。
  • 简单起见,我们一个区块只包含一个交易。因此我们在挖矿后,直接创建一个新的区块,并将交易添加到区块中。
def mine_pending_transactions(self, mining_reward_address): # 可以看到 sender 是 None,receiver 是矿工地址,amount 是挖矿奖励  reward_tx = Transaction(None, mining_reward_address, self.mining_reward) self.pending_transactions.append(reward_tx) new_block = Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash) new_block.hash = new_block.calculate_hash() self.chain.append(new_block) self.pending_transactions = [] 
以下为完整代码:
import hashlib import time class Transaction: def __init__(self, sender, receiver, amount):  self.sender = sender  self.receiver = receiver  self.amount = amount class Block: def __init__(self, index, timestamp, transactions, previous_hash):  self.index = index  self.timestamp = timestamp  self.transactions = transactions  self.previous_hash = previous_hash  self.hash = self.calculate_hash() def calculate_hash(self):  sha = hashlib.sha256()  transactions_str = \"\".join([f\"{tx.sender}{tx.receiver}{tx.amount}\" for tx in self.transactions])  sha.update(f\"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}\".encode(\'utf-8\'))  return sha.hexdigest() class Blockchain: def __init__(self):  self.chain = [self.create_genesis_block()]  self.pending_transactions = []  self.mining_reward = 100 def create_genesis_block(self):  return Block(0, time.time(), [], \"0\") def get_latest_block(self):  return self.chain[-1] def mine_pending_transactions(self, mining_reward_address):  reward_tx = Transaction(None, mining_reward_address, self.mining_reward)  self.pending_transactions.append(reward_tx)new_block = Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)  new_block.hash = new_block.calculate_hash()  self.chain.append(new_block)  self.pending_transactions = [] def create_transaction(self, transaction):  self.pending_transactions.append(transaction) def get_balance(self, address):  balance = 0  for block in self.chain:  for tx in block.transactions:  if tx.sender == address: balance -= tx.amount  if tx.receiver == address: balance += tx.amount  return balance # 使用示例 blockchain = Blockchain() # 创建一些交易 blockchain.create_transaction(Transaction(\"Alice\", \"Bob\", 50)) blockchain.create_transaction(Transaction(\"Bob\", \"Alice\", 30)) # 挖矿 blockchain.mine_pending_transactions(\"Miner1\") # 打印区块链 for block in blockchain.chain: print(f\"Index: {block.index}\") print(f\"Timestamp: {block.timestamp}\") print(f\"Transactions: {[{\'sender\': tx.sender, \'receiver\': tx.receiver, \'amount\': tx.amount} for tx in block.transactions]}\") print(f\"Previous Hash: {block.previous_hash}\") print(f\"Hash: {block.hash}\") print() # 打印余额 print(f\"Balance of Miner1: {blockchain.get_balance(\'Miner1\')}\") print(f\"Balance of Alice: {blockchain.get_balance(\'Alice\')}\") print(f\"Balance of Bob: {blockchain.get_balance(\'Bob\')}\") 

谁能挖矿成功?

在区块链中,挖矿是一个竞争的过程,只有第一个找到符合条件的哈希值的矿工才能获得奖励。这个过程是一个随机的过程,因此只能通过不断尝试来找到符合条件的哈希值。
决定谁可以挖矿成功的算法有很多种,比如工作量证明(Proof of Work)、权益证明(Proof of Stake)等等。其中工作量证明是最常见的一种算法,比特币就是使用工作量证明算法来决定谁可以挖矿成功。
这里我们实现一下工作量证明算法(POW)。工作量证明算法的核心思想是找到一个符合条件的哈希值,这个哈希值的前几位是 0。这个条件是可以调整的,比如前两位是 0,前三位是 0 等等。位数越多,实现起来越困难。我们可以将这个位数称为难度(Difficulty)。如果被哈希的字符串是固定的,那么哈希值一定也是固定的,因此被哈希的字符串不能是固定的(否则可能无法找到符合条件的哈希值),通常的做法是包含一个随机数 nonce,这个随机数就是我们需要不断尝试的值。
也就是说没有这个约束,我们很快就能计算出哈希,这个哈希有可能也不满足 difficult 条件,但是有了这个约束,我们就需要不断尝试,直到找到符合条件的哈希值。
为了实现这个目的,我们需要:
  • 修改 Block 类:添加 nonce 属性和 proof_of_work 方法。
def proof_of_work(self, difficulty): self.nonce = 0 computed_hash = self.calculate_hash() while not computed_hash.startswith(\'0\' * difficulty):  self.nonce += 1  computed_hash = self.calculate_hash() return computed_hash 
  • 修改 Blockchain 类:在挖矿时调用 proof_of_work 方法。
import hashlib import time class Transaction: def __init__(self, sender, receiver, amount):  self.sender = sender  self.receiver = receiver  self.amount = amount class Block: def __init__(self, index, timestamp, transactions, previous_hash):  self.index = index  self.timestamp = timestamp  self.transactions = transactions  self.previous_hash = previous_hash  self.nonce = 0  self.hash = self.calculate_hash() def calculate_hash(self):  sha = hashlib.sha256()  transactions_str = \"\".join([f\"{tx.sender}{tx.receiver}{tx.amount}\" for tx in self.transactions])  sha.update(f\"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}\".encode(\'utf-8\'))  return sha.hexdigest() def proof_of_work(self, difficulty):  self.nonce = 0  computed_hash = self.calculate_hash()  while not computed_hash.startswith(\'0\' * difficulty):  self.nonce += 1  computed_hash = self.calculate_hash()  return computed_hash class Blockchain: def __init__(self):  self.chain = [self.create_genesis_block()]  self.pending_transactions = []  self.mining_reward = 100  self.difficulty = 4 def create_genesis_block(self):  return Block(0, time.time(), [], \"0\") def get_latest_block(self):  return self.chain[-1] def mine_pending_transactions(self, mining_reward_address):  reward_tx = Transaction(None, mining_reward_address, self.mining_reward)  self.pending_transactions.append(reward_tx)  new_block = Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)  # 注意这里调用的是 proof_of_work 方法  new_block.hash = new_block.proof_of_work(self.difficulty)  self.chain.append(new_block)  self.pending_transactions = [] def create_transaction(self, transaction):  self.pending_transactions.append(transaction) def get_balance(self, address):  balance = 0  for block in self.chain:  for tx in block.transactions:  if tx.sender == address: balance -= tx.amount  if tx.receiver == address: balance += tx.amount  return balance # 使用示例 blockchain = Blockchain() # 创建一些交易 blockchain.create_transaction(Transaction(\"Alice\", \"Bob\", 50)) blockchain.create_transaction(Transaction(\"Bob\", \"Alice\", 30)) # 挖矿 blockchain.mine_pending_transactions(\"Miner1\") # 打印区块链 for block in blockchain.chain: print(f\"Index: {block.index}\") print(f\"Timestamp: {block.timestamp}\") print(f\"Transactions: {[{\'sender\': tx.sender, \'receiver\': tx.receiver, \'amount\': tx.amount} for tx in block.transactions]}\") print(f\"Previous Hash: {block.previous_hash}\") print(f\"Hash: {block.hash}\") print(f\"Nonce: {block.nonce}\") print() # 打印余额 print(f\"Balance of Miner1: {blockchain.get_balance(\'Miner1\')}\") print(f\"Balance of Alice: {blockchain.get_balance(\'Alice\')}\") print(f\"Balance of Bob: {blockchain.get_balance(\'Bob\')}\") 

智能合约

智能合约是区块链中的另一个重要概念,它是一种自动执行的合约,不需要中间人,不需要信任。智能合约是区块链中的一种应用,它可以实现一些自动化的业务逻辑,比如数字货币、供应链金融等等。
本质上,智能合约是一段代码,这段代码会被部署到区块链上,然后通过交易来调用这段代码。智能合约的代码是不可篡改的,一旦部署到区块链上,就无法修改。
智能合约的本体就是代码,本质类似于状态机。
智能合约还有一个很重要的概念是 ABI。ABI(Application Binary Interface,应用二进制接口)是智能合约与外部应用程序之间的接口定义。它描述了智能合约的函数和事件,使得外部应用程序可以与智能合约进行交互。
智能合约代码是用 Solidity 等编程语言编写的,定义了合约的逻辑和功能。合约代码通常需要编译,在编译后会生成字节码(bytecode),部署到区块链上。
ABI 是合约编译后生成的 JSON 文件,描述了合约的接口。它不包含合约的逻辑实现,只包含函数和事件的定义。外部应用程序使用 ABI 来与部署在区块链上的合约进行交互。
也就是说 ABI 决定了如何调用合约,而合约代码决定了合约的逻辑
为了在区块链中添加智能合约功能,我们需要进行以下步骤:
    1. 定义智能合约类:创建一个 SmartContract 类,用于定义智能合约的基本结构和功能。
class SmartContract: def __init__(self, code):  self.code = code  self.state = {} def execute(self, sender, receiver, amount):  exec(self.code, {\'sender\': sender, \'receiver\': receiver, \'amount\': amount, \'state\': self.state}) 
    1. 修改 Blockchain 类:添加处理智能合约的功能。
def deploy_contract(self, contract_code): contract = SmartContract(contract_code) contract_address = hashlib.sha256(contract_code.encode(\'utf-8\')).hexdigest() self.contracts[contract_address] = contract return contract_address def call_contract(self, contract_address, sender, receiver, amount): contract = self.contracts.get(contract_address) if contract:  contract.execute(sender, receiver, amount)  tx = Transaction(sender, receiver, amount, contract_address)  self.create_transaction(tx) 

合约有地址属性,合约的地址是合约代码的哈希值,这也说明了合约的本体就是代码本身。通常要调用合约就是指定合约地址,然后调用合约的方法,外加一些参数。本质上和调用函数是一样的。

完整代码:
import hashlib import time class Transaction: def __init__(self, sender, receiver, amount, contract=None): self.sender = sender self.receiver = receiver self.amount = amount self.contract = contract class SmartContract: def __init__(self, code):  self.code = code  self.state = {} def execute(self, sender, receiver, amount):  exec(self.code, {\'sender\': sender, \'receiver\': receiver, \'amount\': amount, \'state\': self.state}) class Block: def __init__(self, index, timestamp, transactions, previous_hash):  self.index = index  self.timestamp = timestamp  self.transactions = transactions  self.previous_hash = previous_hash  self.nonce = 0  self.hash = self.calculate_hash() def calculate_hash(self):  sha = hashlib.sha256()  transactions_str = \"\".join([f\"{tx.sender}{tx.receiver}{tx.amount}{tx.contract}\" for tx in self.transactions])  sha.update(f\"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}\".encode(\'utf-8\'))  return sha.hexdigest() def proof_of_work(self, difficulty):  self.nonce = 0  computed_hash = self.calculate_hash()  while not computed_hash.startswith(\'0\' * difficulty):  self.nonce += 1  computed_hash = self.calculate_hash()  return computed_hash class Blockchain: def __init__(self):  self.chain = [self.create_genesis_block()]  self.pending_transactions = []  self.mining_reward = 100  self.difficulty = 4  self.contracts = {} def create_genesis_block(self):  return Block(0, time.time(), [], \"0\") def get_latest_block(self):  return self.chain[-1] def mine_pending_transactions(self, mining_reward_address):  reward_tx = Transaction(None, mining_reward_address, self.mining_reward) self.pending_transactions.append(reward_tx)  new_block = Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)  new_block.hash = new_block.proof_of_work(self.difficulty)  self.chain.append(new_block)  self.pending_transactions = [] def create_transaction(self, transaction):  self.pending_transactions.append(transaction) def deploy_contract(self, contract_code):  contract = SmartContract(contract_code)  contract_address = hashlib.sha256(contract_code.encode(\'utf-8\')).hexdigest() self.contracts[contract_address] = contract  return contract_address def call_contract(self, contract_address, sender, receiver, amount):  contract = self.contracts.get(contract_address)  if contract:  contract.execute(sender, receiver, amount)  tx = Transaction(sender, receiver, amount, contract_address)  self.create_transaction(tx) def get_balance(self, address):  balance = 0  for block in self.chain:  for tx in block.transactions:  if tx.sender == address: balance -= tx.amount  if tx.receiver == address: balance += tx.amount  return balance # 使用示例 blockchain = Blockchain() # 部署智能合约 contract_code = \"\"\" if amount > 10: state[\'status\'] = \'High value transaction\' else: state[\'status\'] = \'Low value transaction\' \"\"\" contract_address = blockchain.deploy_contract(contract_code) # 调用智能合约 blockchain.call_contract(contract_address, \"Alice\", \"Bob\", 50) # 挖矿 blockchain.mine_pending_transactions(\"Miner1\") # 打印区块链 for block in blockchain.chain: print(f\"Index: {block.index}\") print(f\"Timestamp: {block.timestamp}\") print(f\"Transactions: {[{\'sender\': tx.sender, \'receiver\': tx.receiver, \'amount\': tx.amount, \'contract\': tx.contract} for tx in block.transactions]}\") print(f\"Previous Hash: {block.previous_hash}\") print(f\"Hash: {block.hash}\") print(f\"Nonce: {block.nonce}\") print() # 打印智能合约状态 print(f\"Contract State: {blockchain.contracts[contract_address].state}\") # 打印余额 print(f\"Balance of Miner1: {blockchain.get_balance(\'Miner1\')}\") print(f\"Balance of Alice: {blockchain.get_balance(\'Alice\')}\") print(f\"Balance of Bob: {blockchain.get_balance(\'Bob\')}\") 

验证交易

交易不全是有效的,我们需要验证交易的有效性。比如余额不足、交易重复,签名等等。
为了实现验证交易的功能,我们需要以下步骤:
    1. 定义交易验证规则:确保交易的发送者有足够的余额,交易的格式正确等。
def validate_transaction(self, transaction): if transaction.sender is None: # Mining reward transaction  return True sender_balance = self.get_balance(transaction.sender) if sender_balance >= transaction.amount:  return True return False 
  • 交易上也改下,校验签名等信息:
class Transaction: def __init__(self, sender, receiver, amount, signature=None, contract=None):  self.sender = sender  self.receiver = receiver  self.amount = amount  self.signature = signature  self.contract = contract def to_dict(self):  return {\'sender\': self.sender,\'receiver\': self.receiver,\'amount\': self.amount,\'contract\': self.contrac} def sign_transaction(self, private_key):  sk = SigningKey.from_string(bytes.fromhex(private_key), curve=SECP256k1)  message = str(self.to_dict()).encode(\'utf-8\')  self.signature = sk.sign(message).hex() def is_valid(self):  if self.sender is None: # Mining reward transaction  return True  if not self.signature:  return False  vk = VerifyingKey.from_string(bytes.fromhex(self.sender), curve=SECP256k1)  message = str(self.to_dict()).encode(\'utf-8\')  try:  return vk.verify(bytes.fromhex(self.signature), message)  except:  return False 
    1. 实现交易验证方法:在区块链类中添加一个方法来验证交易。
    1. 在添加交易时进行验证:在创建交易时调用验证方法。
import hashlib import time import requests from flask import Flask, jsonify, request from ecdsa import SigningKey, VerifyingKey, SECP256k1 class Transaction: def __init__(self, sender, receiver, amount, signature=None, contract=None):  self.sender = sender  self.receiver = receiver  self.amount = amount  self.signature = signature  self.contract = contract def to_dict(self):  return {\'sender\': self.sender,\'receiver\': self.receiver,\'amount\': self.amount\'contract\': self.contract} def sign_transaction(self, private_key):  sk = SigningKey.from_string(bytes.fromhex(private_key), curve=SECP256k1)  message = str(self.to_dict()).encode(\'utf-8\')  self.signature = sk.sign(message).hex() def is_valid(self):  if self.sender is None: # Mining reward transaction  return True  if not self.signature:  return False vk = VerifyingKey.from_string(bytes.fromhex(self.sender), curve=SECP256k1)  message = str(self.to_dict()).encode(\'utf-8\')  try:  return vk.verify(bytes.fromhex(self.signature), message)  except:  return False class Block: def __init__(self, index, timestamp, transactions, previous_hash):  self.index = index  self.timestamp = timestamp  self.transactions = transactions  self.previous_hash = previous_hash  self.nonce = 0  self.hash = self.calculate_hash() def calculate_hash(self):  sha = hashlib.sha256()  transactions_str = \"\".join([f\"{tx.sender}{tx.receiver}{tx.amount}{tx.contract}\" for tx in self.transactions])  sha.update(f\"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}\".encode(\'utf-8\'))  return sha.hexdigest() def proof_of_work(self, difficulty):  self.nonce = 0 computed_hash = self.calculate_hash()  while not computed_hash.startswith(\'0\' * difficulty):  self.nonce += 1  computed_hash = self.calculate_hash()  return computed_hash class Blockchain: def __init__(self):  self.chain = [self.create_genesis_block()]  self.pending_transactions = []  self.mining_reward = 100  self.difficulty = 4  self.contracts = {}  self.nodes = set() def create_genesis_block(self):  return Block(0, time.time(), [], \"0\") def get_latest_block(self):  return self.chain[-1] def mine_pending_transactions(self, mining_reward_address):  reward_tx = Transaction(None, mining_reward_address, self.mining_reward)  self.pending_transactions.append(reward_tx)  new_block = Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)  new_block.hash = new_block.proof_of_work(self.difficulty)  self.chain.append(new_block)  self.pending_transactions = []  self.broadcast_block(new_block) def create_transaction(self, transaction):  if self.validate_transaction(transaction):  self.pending_transactions.append(transaction)  self.broadcast_transaction(transaction)  else:  raise ValueError(\"Invalid transaction\") def validate_transaction(self, transaction):  if transaction.sender is None: # Mining reward transaction  return True  sender_balance = self.get_balance(transaction.sender)  if sender_balance >= transaction.amount and transaction.is_valid():  return True  return False def deploy_contract(self, contract_code):  contract = SmartContract(contract_code)  contract_address = hashlib.sha256(contract_code.encode(\'utf-8\')).hexdigest()  self.contracts[contract_address] = contract  return contract_address def call_contract(self, contract_address, sender, receiver, amount):  contract = self.contracts.get(contract_address)  if contract:  contract.execute(sender, receiver, amount)  tx = Transaction(sender, receiver, amount, contract_address)  self.create_transaction(tx) def get_balance(self, address):  balance = 0  for block in self.chain:  for tx in block.transactions:  if tx.sender == address:balance -= tx.amount  if tx.receiver == address: balance += tx.amount  return balance class Node: def __init__(self, address):  self.address = address  self.blockchain = Blockchain() 

如果两个矿工同时挖到了区块怎么办?

这涉及到一个共识算法,比如比特币使用的共识算法是最长链原则。
在区块链中,如果两个矿工同时挖到了区块,那么就会出现分叉的情况。这个时候需要选择一个分支作为主链,另一个分支作为孤块。选择主链的原则是选择最长的链作为主链。
至今我们的区块链都是单节点的,接下来我们要实现多节点的区块链来解决这个问题。
首先我们需要实现多节点、节点广播和节点同步的功能。为此我需要:
    1. 定义节点类:创建一个 Node 类,用于表示区块链网络中的节点。
class Node: def __init__(self, address):  self.address = address  self.blockchain = Blockchain() def connect_to_node(self, node_address):  self.blockchain.add_node(node_address) def broadcast_transaction(self, transaction):  for node in self.blockchain.nodes:  requests.post(f\"{node}/add_transaction\", json=transaction.__dict__) 
    1. 修改 Blockchain 类:添加处理节点和广播的功能。
def add_node(self, address):  self.nodes.add(address) def broadcast_block(self, block):  for node in self.nodes:  requests.post(f\"{node}/add_block\", json=block.__dict__) def sync_chain(self):  longest_chain = None  max_length = len(self.chain)  for node in self.nodes:  response = requests.get(f\"{node}/chain\")  length = response.json()[\'length\']  chain = response.json()[\'chain\']  if length > max_length:  max_length = length  longest_chain = chain  if longest_chain:  self.chain = [Block(**block) for block in longest_chain]
    1. 实现节点之间的通信:使用 HTTP 或 WebSocket 实现节点之间的通信。
app = Flask(__name__) node = Node(\"http://localhost:5000\") @app.route(\'/chain\', methods=[\'GET\']) def get_chain(): chain_data = [block.__dict__ for block in node.blockchain.chain] return jsonify(length=len(chain_data), chain=chain_data) @app.route(\'/add_block\', methods=[\'POST\']) def add_block(): block_data = request.get_json() block = Block(**block_data) node.blockchain.chain.append(block) return \"Block added\", 201 @app.route(\'/add_transaction\', methods=[\'POST\']) def add_transaction(): tx_data = request.get_json() transaction = Transaction(**tx_data) node.blockchain.create_transaction(transaction) return \"Transaction added\", 201 @app.route(\'/mine\', methods=[\'GET\']) def mine(): node.blockchain.mine_pending_transactions(node.address) return \"Mining complete\", 200 if __name__ == \'__main__\': app.run(port=5000) 
接下来,我们实现最长链原则,当两个矿工同时挖到了区块时,我们选择最长的链作为主链。
为了实现这个功能,我们先介绍下分叉如何实现。
  1. 创建一个新的链:从当前链的某个区块开始创建一个新的链。
  2. 添加新的区块到分叉链:在新的链上添加新的区块。
  3. 切换到分叉链:在需要的时候切换到分叉链。
整个过程类似于我们 git 上切换分支。
fork_chain 方法:从当前链的某个区块开始创建一个新的链,并将其添加到 forks 列表中。
switch_to_fork 方法:切换到指定的分叉链
Flask 路由:
  • /fork 路由用于创建分叉链。
  • /switch_fork 路由用于切换到指定的分叉链。
最后我们来加入最长链原则。
为了在区块链中实现最长链原则,我们需要在同步链时选择最长的链作为当前链。以下是详细步骤和代码实现:
详细步骤
  1. 同步链:从所有节点获取链数据。找到最长的链。如果最长的链比当前链长,则替换当前链。
  2. 广播新块:当有新块时,广播给所有节点。
  3. 验证链:验证链的有效性。
  • sync_chain 方法:从所有节点获取链数据,找到最长的链并替换当前链
  • is_valid_chain 方法:验证链的有效性,确保链中的每个块都有效。
Flask 路由:
  • /chain 路由用于获取当前链数据。
以下为完整代码:
import hashlib import time import requests from flask import Flask, jsonify, request from ecdsa import SigningKey, VerifyingKey, SECP256k1 class Transaction: def __init__(self, sender, receiver, amount, signature=None, contract=None):  self.sender = sender  self.receiver = receiver  self.amount = amount  self.signature = signature  self.contract = contract def to_dict(self):  return {\'sender\': self.sender,\'receiver\': self.receiver,\'amount\': self.amount,\'contract\': self.contract} def sign_transaction(self, private_key):  sk = SigningKey.from_string(bytes.fromhex(private_key), curve=SECP256k1)  message = str(self.to_dict()).encode(\'utf-8\')  self.signature = sk.sign(message).hex() def is_valid(self):  if self.sender is None: # Mining reward transaction  return True  if not self.signature:  return False  vk = VerifyingKey.from_string(bytes.fromhex(self.sender), curve=SECP256k1)  message = str(self.to_dict()).encode(\'utf-8\')  try:  return vk.verify(bytes.fromhex(self.signature), message)  except:  return False class Block: def __init__(self, index, timestamp, transactions, previous_hash):  self.index = index  self.timestamp = timestamp  self.transactions = transactions  self.previous_hash = previous_hash  self.nonce = 0  self.hash = self.calculate_hash() def calculate_hash(self):  sha = hashlib.sha256()  transactions_str = \"\".join([f\"{tx.sender}{tx.receiver}{tx.amount}{tx.contract}\" for tx in self.transactions])  sha.update(f\"{self.index}{self.timestamp}{transactions_str}{self.previous_hash}{self.nonce}\".encode(\'utf-8\'))  return sha.hexdigest() def proof_of_work(self, difficulty):  self.nonce = 0  computed_hash = self.calculate_hash()  while not computed_hash.startswith(\'0\' * difficulty):  self.nonce += 1  computed_hash = self.calculate_hash()  return computed_hash class Blockchain: def __init__(self):  self.chain = [self.create_genesis_block()]  self.pending_transactions = []  self.mining_reward = 100  self.difficulty = 4  self.contracts = {}  self.nodes = set()  self.forks = [] def create_genesis_block(self):  return Block(0, time.time(), [], \"0\") def get_latest_block(self): return self.chain[-1] def mine_pending_transactions(self, mining_reward_address):  reward_tx = Transaction(None, mining_reward_address, self.mining_reward)  self.pending_transactions.append(reward_tx)  new_block = Block(len(self.chain), time.time(), self.pending_transactions, self.get_latest_block().hash)  new_block.hash = new_block.proof_of_work(self.difficulty)  self.chain.append(new_block)  self.pending_transactions = []  self.broadcast_block(new_block) def create_transaction(self, transaction):  if self.validate_transaction(transaction):  self.pending_transactions.append(transaction)  self.broadcast_transaction(transaction)  else:  raise ValueError(\"Invalid transaction\") def validate_transaction(self, transaction):  if transaction.sender is None: # Mining reward transaction  return True  sender_balance = self.get_balance(transaction.sender)  if sender_balance >= transaction.amount and transaction.is_valid():  return True  return False def deploy_contract(self, contract_code):  contract = SmartContract(contract_code)  contract_address = hashlib.sha256(contract_code.encode(\'utf-8\')).hexdigest()  self.contracts[contract_address] = contract return contract_address def call_contract(self, contract_address, sender, receiver, amount):  contract = self.contracts.get(contract_address)  if contract:  contract.execute(sender, receiver, amount)  tx = Transaction(sender, receiver, amount, contract_address)  self.create_transaction(tx) def get_balance(self, address):  balance = 0  for block in self.chain:  for tx in block.transactions:  if tx.sender == address: balance -= tx.amount  if tx.receiver == address: balance += tx.amount  return balance def add_node(self, address):  self.nodes.add(address) def broadcast_block(self, block):  for node in self.nodes:  requests.post(f\"{node}/add_block\", json=block.__dict__) def broadcast_transaction(self, transaction):  for node in self.nodes:  requests.post(f\"{node}/add_transaction\", json=transaction.__dict__) def sync_chain(self):  longest_chain = None  max_length = len(self.chain)  for node in self.nodes:  response = requests.get(f\"{node}/chain\")  length = response.json()[\'length\']  chain = response.json()[\'chain\']  if length > max_length and self.is_valid_chain(chain):  max_length = length  longest_chain = chain  if longest_chain:  self.chain = [Block(**block) for block in longest_chain] def is_valid_chain(self, chain):  for i in range(1, len(chain)):  current_block = chain[i]  previous_block = chain[i - 1]  if current_block[\'previous_hash\'] != previous_block[\'hash\']:  return False  block = Block(**current_block)  if block.hash != block.calculate_hash():  return False  return True def fork_chain(self, fork_point):  if fork_point < 0 or fork_point >= len(self.chain):  raise ValueError(\"Invalid fork point\")  forked_chain = self.chain[:fork_point + 1]  self.forks.append(forked_chain)  return forked_chain def switch_to_fork(self, fork_index):  if fork_index < 0 or fork_index >= len(self.forks):  raise ValueError(\"Invalid fork index\")  self.chain = self.forks[fork_index] class Node: def __init__(self, address):  self.address = address  self.blockchain = Blockchain() def connect_to_node(self, node_address):  self.blockchain.add_node(node_address) def broadcast_transaction(self, transaction):  for node in self.blockchain.nodes:  requests.post(f\"{node}/add_transaction\", json=transaction.__dict__) app = Flask(__name__) node = Node(\"http://localhost:5000\") @app.route(\'/chain\', methods=[\'GET\']) def get_chain(): chain_data = [block.__dict__ for block in node.blockchain.chain] return jsonify(length=len(chain_data), chain=chain_data) @app.route(\'/add_block\', methods=[\'POST\']) def add_block(): block_data = request.get_json() block = Block(**block_data) node.blockchain.chain.append(block) return \"Block added\", 201 @app.route(\'/add_transaction\', methods=[\'POST\']) def add_transaction(): tx_data = request.get_json() transaction = Transaction(**tx_data) try:  node.blockchain.create_transaction(transaction)  return \"Transaction added\", 201 except ValueError as e:  return str(e), 400 @app.route(\'/mine\', methods=[\'GET\']) def mine(): node.blockchain.mine_pending_transactions(node.address) return \"Mining complete\", 200 @app.route(\'/fork\', methods=[\'POST\']) def fork(): fork_point = request.json.get(\'fork_point\') try:  forked_chain = node.blockchain.fork_chain(fork_point)  return jsonify([block.__dict__ for block in forked_chain]), 201 except ValueError as e:  return str(e), 400 @app.route(\'/switch_fork\', methods=[\'POST\']) def switch_fork(): fork_index = request.json.get(\'fork_index\') try:  node.blockchain.switch_to_fork(fork_index)  return \"Switched to fork\", 200 except ValueError as e:  return str(e), 400 if __name__ == \'__main__\': app.run(port=5000) 

总结

在本文中,我们学习了如何使用 Python 实现一个简单的区块链。我们实现了区块链、区块、交易、智能合约、节点等核心概念。我们还实现了挖矿、交易验证、节点同步等功能,希望能帮助你快速入门区块链技术。

图片

总结

  • 最后希望你编程学习上不急不躁,按照计划有条不紊推进,把任何一件事做到极致,都是不容易的,加油,努力!相信自己!

文末福利

  • 最后这里免费分享给大家一份Python全套学习资料,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】领取!
  • ① Python所有方向的学习路线图,清楚各个方向要学什么东西
  • ② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析
  • ③ 100多个Python实战案例,学习不再是只会理论
  • ④ 华为出品独家Python漫画教程,手机也能学习

可以扫描下方二维码领取【保证100%免费在这里插入图片描述