> 技术文档 > RT-THREAD RTC组件中Alarm功能驱动完善_rt thread rtc 闹钟

RT-THREAD RTC组件中Alarm功能驱动完善_rt thread rtc 闹钟

使用Rt-Thread的目的为了更快的搭载工程,使用Rt-Thread丰富的组件和第三方包资源,解耦硬件,在更换芯片时可以移植应用层代码。你是要RTT的目的什么呢?

文章项目背景

以STM32L475RCT6为例

RTC使用的为LSE外部低速32 .756k Hz 的晶体振荡器。

使用RT-Thread Studio作为IDE进行项目开发,内核版本使用的为4.1.1。

参考:

        RTC设备

        RT-Thread-drv_rtc.c alarm 的实现

shell指令:

        date:查看日期,(查询的为北京时间,不是UTC时间,北京时间比UTC时间快8h)

        list_alarm:查看rtc闹钟

1.创建项目打开RTC组件

1.1配置RTC外设

打开drivers/board.h,按照注释进行对应操作,

         打开RT-Thread Settings rtc driver support

         board.h宏定义#define BSP_USING_ONCHIP_RTC

         stm32xxxx_hal_config.h宏定义#define HAL_RTC_MODULE_ENABLED

1.2 编译报错

正常步骤来说进行上述操作后就可以了,但是编译报错

drivers/drv_rtc.c驱动报错

conflicting types for \'rt_hw_rtc_register\'

出现这个错误的原因是rt_hw_rtc_register函数在两个地方被定义了,所以出现了类型定义冲突。这里只需要屏蔽其中一个定义就可以了。RTC初始化的操作是在BSP中的驱动中执行的,因此这里建议屏蔽内核中的rt_hw_rtc_register定义,只需要屏蔽rt- thread\\components\\drivers\\include\\drivers下的rtc.h文件中的函数声明就行了。

修改后编译成功,可以跑一下RTC的例程,RTC 设备使用示例

1.3 使用Alarm功能

查看 drivers/drv_rtc.c驱动,在rtt中,对RTC设备操作,最终还是通过函数指针使用static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)函数进行的操作。可以发现该函数驱动并没有完善的功能。当然这部分功能在不同的BSP中驱动也会不同,所以需要手动完善。

因此,RTC的alarm功能需要完善,因此无法直接使用。

2.Alarm功能驱动开发

        首先要明白Alarm的原理框架,在步骤1.2中虽然屏蔽了内核中的rtc设备注册函数,但是Alarm的功能框架仍然需要依赖内核中的rRTC组件中的Alarm功能。

        查看项目中rt-thread\\components\\drivers\\rtc目录下的alarm.c文件,在该文件中Alarm使用RTT的自动初始化机制INIT_PREV_EXPORT(rt_alarm_system_init);创建了一个线程用来监测RTC的闹钟。

        通过参考官方Alarm使用示例:RTC设备

        

/*** 程序清单:这是一个 RTC 设备使用例程** 例程导出了 alarm_sample 命令到控制终端** 命令调用格式:alarm_sample** 程序功能:设置RTC时间,创建闹钟,模式:每秒触发,启动闹钟**/void user_alarm_callback(rt_alarm_t alarm, time_t timestamp){ rt_kprintf(\"user alarm callback function.\\n\");}void alarm_sample(void){ rt_device_t dev = rt_device_find(\"rtc\"); struct rt_alarm_setup setup; struct rt_alarm * alarm = RT_NULL; static time_t now; struct tm p_tm; if (alarm != RT_NULL) return; /* 获取当前时间戳,并把下一秒时间设置为闹钟时间 */ now = time(NULL) + 1; gmtime_r(&now,&p_tm); setup.flag = RT_ALARM_SECOND; setup.wktime.tm_year = p_tm.tm_year; setup.wktime.tm_mon = p_tm.tm_mon; setup.wktime.tm_mday = p_tm.tm_mday; setup.wktime.tm_wday = p_tm.tm_wday; setup.wktime.tm_hour = p_tm.tm_hour; setup.wktime.tm_min = p_tm.tm_min; setup.wktime.tm_sec = p_tm.tm_sec; alarm = rt_alarm_create(user_alarm_callback, &setup); if(RT_NULL != alarm) { rt_alarm_start(alarm); }}/* export msh cmd */MSH_CMD_EXPORT(alarm_sample,alarm sample);

Alarm功能主要是通过   rt_alarm_create函数创建一个Alarm闹钟,该函数返回一个rt_alarm类型的结构体来承载闹钟信息。

然后再通过rt_alarm_start来启动闹钟。

在该函数中需要注意,rt_alarm_start 函数下的 alarm_setup函数会根据闹钟标志位对

alarm->wktime 闹钟的时间信息重新赋值,alarm_setup 中重新赋值 使用 get_timestamp 函数重新获取时间,rtc.c文件中的get_timestamp  本质上也是通过 rt_device_control(_rtc_device, RT_DEVICE_CTRL_RTC_GET_TIME, timestamp);来获取rtc时间,最终还是通过调用drivers/drv_rtc.c驱动中的get_rtc_timestamp函数 。

        在梳理整个的RTC驱动时,要注意区分UTC时间和本地时间(北京时间)的函数接口

gmtime和localtime的线程安全版本:gmtime_r(&now, &timeinfo);//UTC时间若为00 :00:00localtime_r(&now, &timeinfo);//本地时间即为08 :00:00mktime(&tm_new); 和 timegm(&tm_new);

在移植驱动的过程中,可能会因为时间原因导致闹钟配置错误。

        Alarm简介

        rtt的官方文档中是这样介绍Alarm功能的:

alarm 闹钟功能是基于 RTC 设备实现的,根据用户设定的闹钟时间,当时间到时触发 alarm 中断,执行闹钟事件,在硬件上 RTC 提供的 Alarm 是有限的,RT-Thread 将 Alarm 在软件层次上封装成了一个组件,原理上可以实现无限个闹钟,但每个闹钟只有最后一次设定有效

        我们知道STM32 的 RTC 模块通常支持设置两个闹钟,分别为闹钟 A(Alarm A)闹钟 B(Alarm B)。但是在rtt中通过软件确实实现了多个闹钟的功能。

        (移植完驱动代码后)通过在drv_rtc.c文件中的下列代码中添加打印,来判断RTC硬件闹钟和RTT软件闹钟实现的区别。

        该回调函数为硬件RTC闹钟的回调函数

void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc){ rt_alarm_update(0,0); rt_kprintf(\"HAL RTC Alarm Handle CallBack\\r\\n\");}

        通过list_alarm指令查询闹钟

        这里可以发现,RTT是通过for循环遍历_container链表来管理的软件闹钟。虽然理论上可以实现无限个闹钟,但是如果需要RTC闹钟唤醒休眠状态下的MCU,那么软件闹钟是行不通的。

        如果说进行低功耗方案设计,每次休眠状态都要进入待机模式:

                在该模式下,除了 RTC 和备份域(包括备份寄存器和 RTC 时钟源),芯片的其他所有电源都被切断,内部电压调节器被关闭,SRAM 和寄存器内容丢失。

        因此软件RTC闹钟数据会丢失,硬件RTC闹钟数据会被保留,在进行低功耗设计时使用RTT提供的RTC Alarm组件需要注意这一点。

void rt_alarm_dump(void){ rt_list_t *next; rt_alarm_t alarm; rt_kprintf(\"| hh:mm:ss | week | flag | en |\\n\"); rt_kprintf(\"+----------+------+------+----+\\n\"); for (next = _container.head.next; next != &_container.head; next = next->next) { alarm = rt_list_entry(next, struct rt_alarm, list); rt_uint8_t flag_index = get_alarm_flag_index(alarm->flag); rt_kprintf(\"| %02d:%02d:%02d | %2d | %2s | %2d |\\n\", alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec, alarm->wktime.tm_wday, _alarm_flag_tbl[flag_index].name, alarm->flag & RT_ALARM_STATE_START); } rt_kprintf(\"+----------+------+------+----+\\n\");}MSH_CMD_EXPORT_ALIAS(rt_alarm_dump, list_alarm, list alarm info);

Alarm回调函数的实现

下列函数为drv_rtc.c中RTC Alarm的事件回调函数。当RTC触发闹钟,程序便会触发该回调函数,执行rt_alarm_update

void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc){ rt_alarm_update(0,0);}

alarm.c文件中的rt_alarm_update函数,rt_event_send是Rt-Thread中的线程同步机制:事件集。

事件集

在此处释放特定事件唤醒 alarmsvc 线程,最终通过该线程的alarm_update(recv)执行注册好的闹钟回调函数。

void rt_alarm_update(rt_device_t dev, rt_uint32_t event){ rt_event_send(&_container.event, 1);}

2.1drv_rtc.c驱动代码

附上drv_rtc.c完整代码,仅供参考

/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-12-04 balanceTWK first version */#include \"board.h\"#include#include#ifdef BSP_USING_ONCHIP_RTC#ifndef HAL_RTCEx_BKUPRead#define HAL_RTCEx_BKUPRead(x1, x2) (~BKUP_REG_DATA)#endif#ifndef HAL_RTCEx_BKUPWrite#define HAL_RTCEx_BKUPWrite(x1, x2, x3)#endif#ifndef RTC_BKP_DR1#define RTC_BKP_DR1 RT_NULL#endif//#define DRV_DEBUG#define LOG_TAG \"drv.rtc\"#include #define BKUP_REG_DATA 0xA5A5static struct rt_device rtc;static RTC_HandleTypeDef RTC_Handler;static time_t get_rtc_timestamp(void){ RTC_TimeTypeDef RTC_TimeStruct = {0}; RTC_DateTypeDef RTC_DateStruct = {0}; struct tm tm_new; HAL_RTC_GetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN); HAL_RTC_GetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN); tm_new.tm_sec = RTC_TimeStruct.Seconds; tm_new.tm_min = RTC_TimeStruct.Minutes; tm_new.tm_hour = RTC_TimeStruct.Hours; tm_new.tm_mday = RTC_DateStruct.Date; tm_new.tm_mon = RTC_DateStruct.Month - 1; tm_new.tm_year = RTC_DateStruct.Year + 100; LOG_D(\"get rtc time.\");// return mktime(&tm_new); return timegm(&tm_new);}static rt_err_t set_rtc_time_stamp(time_t time_stamp){ RTC_TimeTypeDef RTC_TimeStruct = {0}; RTC_DateTypeDef RTC_DateStruct = {0}; struct tm *p_tm; p_tm = localtime(&time_stamp); if (p_tm->tm_year tm_sec ; RTC_TimeStruct.Minutes = p_tm->tm_min ; RTC_TimeStruct.Hours = p_tm->tm_hour; RTC_DateStruct.Date = p_tm->tm_mday; RTC_DateStruct.Month = p_tm->tm_mon + 1 ; RTC_DateStruct.Year = p_tm->tm_year - 100; RTC_DateStruct.WeekDay = p_tm->tm_wday + 1; if (HAL_RTC_SetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN) != HAL_OK) { return -RT_ERROR; } if (HAL_RTC_SetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN) != HAL_OK) { return -RT_ERROR; } LOG_D(\"set rtc time.\"); HAL_RTCEx_BKUPWrite(&RTC_Handler, RTC_BKP_DR1, BKUP_REG_DATA); return RT_EOK;}static void rt_rtc_init(void){#ifndef SOC_SERIES_STM32H7 __HAL_RCC_PWR_CLK_ENABLE();#endif RCC_OscInitTypeDef RCC_OscInitStruct = {0};#ifdef BSP_RTC_USING_LSI RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; RCC_OscInitStruct.LSEState = RCC_LSE_OFF; RCC_OscInitStruct.LSIState = RCC_LSI_ON;#else RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_OFF;#endif HAL_RCC_OscConfig(&RCC_OscInitStruct);}static rt_err_t rt_rtc_config(struct rt_device *dev){ RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; HAL_PWR_EnableBkUpAccess(); PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;#ifdef BSP_RTC_USING_LSI PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;#else PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;#endif HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); /* Enable RTC Clock */ __HAL_RCC_RTC_ENABLE(); RTC_Handler.Instance = RTC; if (HAL_RTCEx_BKUPRead(&RTC_Handler, RTC_BKP_DR1) != BKUP_REG_DATA) { LOG_I(\"RTC hasn\'t been configured, please use  command to config.\");#if defined(SOC_SERIES_STM32F1) RTC_Handler.Init.OutPut = RTC_OUTPUTSOURCE_NONE; RTC_Handler.Init.AsynchPrediv = RTC_AUTO_1_SECOND;#elif defined(SOC_SERIES_STM32F0) /* set the frequency division */#ifdef BSP_RTC_USING_LSI RTC_Handler.Init.AsynchPrediv = 0XA0; RTC_Handler.Init.SynchPrediv = 0xFA;#else RTC_Handler.Init.AsynchPrediv = 0X7F; RTC_Handler.Init.SynchPrediv = 0x0130;#endif /* BSP_RTC_USING_LSI */ RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24; RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE; RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32H7) /* set the frequency division */#ifdef BSP_RTC_USING_LSI RTC_Handler.Init.AsynchPrediv = 0X7D;#else RTC_Handler.Init.AsynchPrediv = 0X7F;#endif /* BSP_RTC_USING_LSI */ RTC_Handler.Init.SynchPrediv = 0XFF; RTC_Handler.Init.HourFormat = RTC_HOURFORMAT_24; RTC_Handler.Init.OutPut = RTC_OUTPUT_DISABLE; RTC_Handler.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; RTC_Handler.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;#endif if (HAL_RTC_Init(&RTC_Handler) != HAL_OK) { return -RT_ERROR; } } return RT_EOK;}static rt_err_t set_rtc_alarm_stamp(struct rt_rtc_wkalarm wkalarm){ RTC_AlarmTypeDef sAlarm = {0}; //struct tm *p_tm; //p_tm = localtime(&time_stamp); if(wkalarm.enable == RT_FALSE) { if (HAL_RTC_DeactivateAlarm(&RTC_Handler,RTC_ALARM_A) != HAL_OK)  {  return -RT_ERROR;  }  LOG_D(\"stop rtc alarm.\"); }else { /** Enable the Alarm A */ sAlarm.AlarmTime.Hours = wkalarm.tm_hour; sAlarm.AlarmTime.Minutes = wkalarm.tm_min; sAlarm.AlarmTime.Seconds = wkalarm.tm_sec; sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET; sAlarm.AlarmMask = RTC_ALARMMASK_DATEWEEKDAY; sAlarm.Alarm = RTC_ALARM_A; if (HAL_RTC_SetAlarm_IT(&RTC_Handler, &sAlarm, RTC_FORMAT_BIN) != HAL_OK) { return -RT_ERROR; } LOG_D(\"set rtc alarm.\"); } return RT_EOK;}/** * @brief This function handles RTC alarms A and B interrupt through EXTI line 17. */void RTC_Alarm_IRQHandler(void){ /* USER CODE BEGIN RTC_Alarm_IRQn 0 */ /* USER CODE END RTC_Alarm_IRQn 0 */ HAL_RTC_AlarmIRQHandler(&RTC_Handler); /* USER CODE BEGIN RTC_Alarm_IRQn 1 */ /* USER CODE END RTC_Alarm_IRQn 1 */}void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc){ rt_alarm_update(0,0);}struct rt_rtc_wkalarm get_rtc_alarm_stamp(void){ RTC_AlarmTypeDef sAlarm = {0}; //struct tm tm_new = {0}; struct rt_rtc_wkalarm wkalarm; if (HAL_RTC_GetAlarm(&RTC_Handler, &sAlarm,RTC_ALARM_A, RTC_FORMAT_BIN) != HAL_OK) { LOG_D(\"get rtc alarm fail!.\"); } wkalarm.tm_sec = sAlarm.AlarmTime.Seconds; wkalarm.tm_min = sAlarm.AlarmTime.Minutes; wkalarm.tm_hour = sAlarm.AlarmTime.Hours; // 打印获取到的 RTC 闹钟时间信息// rt_kprintf(\"get rtc alarm: %d %d %d\\r\\n\", wkalarm.tm_hour, wkalarm.tm_min, wkalarm.tm_sec); return wkalarm;}static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args){ rt_err_t result = RT_EOK; RT_ASSERT(dev != RT_NULL); switch (cmd) { case RT_DEVICE_CTRL_RTC_GET_TIME: *(rt_uint32_t *)args = get_rtc_timestamp(); LOG_D(\"RTC: get rtc_time %x\\n\", *(rt_uint32_t *)args); break; case RT_DEVICE_CTRL_RTC_SET_TIME: if (set_rtc_time_stamp(*(rt_uint32_t *)args)) { result = -RT_ERROR; } LOG_D(\"RTC: set rtc_time %x\\n\", *(rt_uint32_t *)args); break; case RT_DEVICE_CTRL_RTC_SET_ALARM: if (set_rtc_alarm_stamp(*(struct rt_rtc_wkalarm *)args)) {  result = -RT_ERROR; } LOG_D(\"RTC: set rtc_alarm %x\\n\", *(rt_uint32_t *)args); break; case RT_DEVICE_CTRL_RTC_GET_ALARM: *(struct rt_rtc_wkalarm *)args = get_rtc_alarm_stamp(); LOG_D(\"RTC: get rtc_alarm %x\\n\", *(rt_uint32_t *)args); break; } return result;}#ifdef RT_USING_DEVICE_OPSconst static struct rt_device_ops rtc_ops ={ RT_NULL, RT_NULL, RT_NULL, RT_NULL, RT_NULL, rt_rtc_control};#endifstatic rt_err_t rt_hw_rtc_register(rt_device_t device, const char *name, rt_uint32_t flag){ RT_ASSERT(device != RT_NULL); rt_rtc_init(); if (rt_rtc_config(device) != RT_EOK) { return -RT_ERROR; }#ifdef RT_USING_DEVICE_OPS device->ops = &rtc_ops;#else device->init = RT_NULL; device->open = RT_NULL; device->close = RT_NULL; device->read = RT_NULL; device->write = RT_NULL; device->control = rt_rtc_control;#endif device->type = RT_Device_Class_RTC; device->rx_indicate = RT_NULL; device->tx_complete = RT_NULL; device->user_data = RT_NULL; /* register a character device */ return rt_device_register(device, name, flag);}int rt_hw_rtc_init(void){ /* RTC interrupt DeInit */ HAL_NVIC_SetPriority(RTC_Alarm_IRQn, 0, 0); HAL_NVIC_EnableIRQ(RTC_Alarm_IRQn); rt_err_t result; result = rt_hw_rtc_register(&rtc, \"rtc\", RT_DEVICE_FLAG_RDWR); if (result != RT_EOK) { LOG_E(\"rtc register err code: %d\", result); return result; } LOG_D(\"rtc init success\"); return RT_EOK;}INIT_DEVICE_EXPORT(rt_hw_rtc_init);#endif /* BSP_USING_ONCHIP_RTC */

获取RTC时间的shell指令,如果有需要可以放在drv_rtc.c文件中使用

void getrtc(void){ RTC_TimeTypeDef RTC_TimeStruct = {0}; RTC_DateTypeDef RTC_DateStruct = {0}; struct tm tm_new; HAL_RTC_GetTime(&RTC_Handler, &RTC_TimeStruct, RTC_FORMAT_BIN); HAL_RTC_GetDate(&RTC_Handler, &RTC_DateStruct, RTC_FORMAT_BIN); tm_new.tm_sec = RTC_TimeStruct.Seconds; tm_new.tm_min = RTC_TimeStruct.Minutes; tm_new.tm_hour = RTC_TimeStruct.Hours; tm_new.tm_mday = RTC_DateStruct.Date; tm_new.tm_mon = RTC_DateStruct.Month - 1; tm_new.tm_year = RTC_DateStruct.Year + 100; rt_kprintf(\"GET RTC time: %04d-%02d-%02d %02d:%02d:%02d\\n\", tm_new.tm_year, // tm_year是从1900年开始计算的 tm_new.tm_mon, // tm_mon是从0开始的,所以要加1 tm_new.tm_mday, tm_new.tm_hour, tm_new.tm_min, tm_new.tm_sec);}MSH_CMD_EXPORT(getrtc,alarm sample);

2.2Alarm测试代码

以下为Alarm测试代码,可以放在main.c中使用

/* * Copyright (c) 2006-2025, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date  Author Notes * 2025-05-08 RT-Thread first version */#include #include #include #include #define DBG_TAG \"main\"#define DBG_LVL DBG_LOG#include #include \"board.h\"int main(void){// int count = 1;//// while (count++)// {// LOG_D(\"Hello RT-Thread!\");// rt_thread_mdelay(1000);// } return RT_EOK;}/*** 程序清单:这是一个 RTC 设备使用例程** 例程导出了 alarm_sample 命令到控制终端** 命令调用格式:alarm_sample** 程序功能:设置RTC时间,创建闹钟,模式:每秒触发,启动闹钟**/void user_alarm_callback(rt_alarm_t alarm, time_t timestamp){ rt_kprintf(\"user alarm callback function.\\n\");}void alarm_sample(void){// 设置RTC时间, set_time(00, 00, 00);//北京时间,alarm为UTC时间// 配置Alarm闹钟 time_t now; struct tm timeinfo; rt_device_t rtc_dev = rt_device_find(\"rtc\"); if (rtc_dev == RT_NULL) { rt_kprintf(\"Find RTC device failed!\\n\"); return; } rt_device_open(rtc_dev, RT_DEVICE_OFLAG_RDWR); rt_err_t result = rt_device_control(rtc_dev, RT_DEVICE_CTRL_RTC_GET_TIME, &now); if (result != RT_EOK) { rt_kprintf(\"Get RTC time failed! Error code: %d\\n\", result); rt_device_close(rtc_dev); return; }// RTC闹钟设置为本地时间可以触发,但是alarm线程会将时间改为UTC时间,所以建议使用UTC时间设置闹钟,这样可以将时间统一。 gmtime_r(&now, &timeinfo);//UTC时间0时// localtime_r(&now, &timeinfo);//本地北京时间8时 rt_kprintf(\"timeinfo time: %04d-%02d-%02d %02d:%02d:%02d\\n\",  timeinfo.tm_year + 1900, // tm_year是从1900年开始计算的  timeinfo.tm_mon + 1, // tm_mon是从0开始的,所以要加1  timeinfo.tm_mday,  timeinfo.tm_hour,  timeinfo.tm_min,  timeinfo.tm_sec); struct rt_alarm_setup setup; struct rt_alarm * alarm = RT_NULL; setup.flag = RT_ALARM_SECOND; setup.wktime.tm_year = timeinfo.tm_year; setup.wktime.tm_mon = timeinfo.tm_mon; setup.wktime.tm_mday = timeinfo.tm_mday; setup.wktime.tm_wday = timeinfo.tm_wday; setup.wktime.tm_hour = timeinfo.tm_hour; setup.wktime.tm_min = timeinfo.tm_min; setup.wktime.tm_sec = timeinfo.tm_sec; alarm = rt_alarm_create(user_alarm_callback, &setup); if(RT_NULL != alarm) { rt_alarm_start(alarm); } rt_kprintf(\"net time: %02d:%02d:%02d\\n\", alarm->wktime.tm_hour, alarm->wktime.tm_min, alarm->wktime.tm_sec);}/* export msh cmd */MSH_CMD_EXPORT(alarm_sample,alarm sample);

附:

项目工程:

        https://gitee.com/Z-cjie/rtts-rtc-alarm-component.git