> 技术文档 > 【EI/Scopus/IEEE Xplore检索|云智联2025】7月电子与通信技术×6G通感算×能源数字孪生×联邦智能×云计算与大数据前沿峰会征稿!

【EI/Scopus/IEEE Xplore检索|云智联2025】7月电子与通信技术×6G通感算×能源数字孪生×联邦智能×云计算与大数据前沿峰会征稿!


【EI/Scopus/IEEE Xplore检索|云智联2025】7月电子与通信技术×6G通感算×能源数字孪生×联邦智能×云计算与大数据前沿峰会征稿!

【EI/Scopus/IEEE Xplore检索|云智联2025】7月电子与通信技术×6G通感算×能源数字孪生×联邦智能×云计算与大数据前沿峰会征稿!


文章目录

  • 【EI/Scopus/IEEE Xplore检索|云智联2025】7月电子与通信技术×6G通感算×能源数字孪生×联邦智能×云计算与大数据前沿峰会征稿!
    • 第七届电子与通信技术国际会议(ECNCT 2025)
    • 2025大数据与数字经济国际会议(BDAIE 2025)
    • 第四届电力系统与能源技术国际会议(ICPSET 2025)
    • 第二届云计算与大数据国际会议(ICCBD 2025)

第七届电子与通信技术国际会议(ECNCT 2025)

  • 2025 7th International Conference on Electronics and Communication, Network and Computer Technology
  • ⏰ 时间:2025.7.18-20 | 📍 地点:中国·广州

  • 🌐 官网:ECNCT 2025
  • 📚 检索:IEEE Xplore出版,EI/Scopus双检(出版后即提交)
  • 💡 亮点:湾区核心聚焦6G太赫兹通信与边缘计算网络架构革新。
  • 👥 适合人群:通信网络、嵌入式系统方向博士生,ICT企业研发团队。
  • 算法示例:6G智能波束成形与信道估计
# 基于深度展开网络的毫米波信道估计(PyTorchimport torchimport torch.nn as nnimport numpy as npclass DeepUnfolder(nn.Module): \"\"\"深度展开网络:融合模型驱动与数据驱动\"\"\" def __init__(self, layers=8): super().__init__() self.layers = nn.ModuleList([ nn.Sequential( nn.Linear(256, 128), # 可学习线性变换 nn.ReLU(), ChannelAttention() # 通道注意力 ) for _ in range(layers) ]) def forward(self, y, A): \"\"\"y: 接收信号, A: 测量矩阵\"\"\" x = torch.pinverse(A) @ y # 模型驱动初始化 for layer in self.layers: residual = y - A @ x grad = A.T @ residual # 梯度计算 x = x + layer(grad) # 数据驱动更新 return xclass ChannelAttention(nn.Module): \"\"\"空间-频率双注意力机制\"\"\" def __init__(self): super().__init__() self.freq_att = nn.Sequential( nn.AdaptiveAvgPool1d(1), nn.Conv1d(128, 8, 1), nn.ReLU(), nn.Conv1d(8, 128, 1), nn.Sigmoid() ) self.spatial_att = nn.Sequential( nn.Conv1d(128, 64, 3, padding=1), nn.ReLU(), nn.Conv1d(64, 128, 3, padding=1), nn.Sigmoid() ) def forward(self, x): freq_weight = self.freq_att(x.unsqueeze(2)).squeeze() spatial_weight = self.spatial_att(x.unsqueeze(1)).squeeze() return x * freq_weight * spatial_weight# 6G信道仿真def generate_6g_channel(num_paths=5, num_antennas=64): \"\"\"生成毫米波多径信道\"\"\" angles = np.random.uniform(-np.pi/2, np.pi/2, num_paths) delays = np.random.exponential(0.2, num_paths) H = np.zeros((num_antennas, num_antennas), dtype=complex) for i in range(num_paths): a_tx = np.exp(1j * np.pi * np.arange(num_antennas) * np.sin(angles[i])) a_rx = np.exp(1j * np.pi * np.arange(num_antennas) * np.sin(angles[i] + np.random.uniform(-0.1,0.1))) H += np.outer(a_rx, a_tx) * np.exp(-1j * 2 * np.pi * delays[i]) return H# 智能波束成形def adaptive_beamforming(H, snr_db=20): \"\"\"基于信道状态的波束成形优化\"\"\" U, S, Vh = np.linalg.svd(H) snr = 10**(snr_db/10) # 注水法功率分配 power = np.maximum(0, np.sqrt(snr) - 1/(S**2)) return Vh.conj().T @ np.diag(power) @ U.conj().T

2025大数据与数字经济国际会议(BDAIE 2025)

  • 2025 International Conference on Big Data, AI and Digital Economy
  • ⏰ 时间:2025.7.18-20 | 📍 地点:中国·昆明
  • 🌐 官网:BDAIE 2025
  • 📚 检索:ACM出版,EI/Scopus双检(3-5天极速录用)
  • 💡 亮点:\"春城\"智汇跨境数据流动治理与边疆数字经济生态构建实践。
  • 👥 适合人群:数字经济政策研究者、东盟市场分析师、大数据工程师。
  • 算法示例:联邦学习驱动的跨平台用户价值预测
# 纵向联邦学习框架(TensorFlow Federatedimport tensorflow as tfimport tensorflow_federated as tff.tf_computationdef create_client_model(): return tf.keras.Sequential([ tf.keras.layers.Dense(32, activation=\'relu\'), tf.keras.layers.Dense(16, activation=\'relu\'), tf.keras.layers.Dense(1, activation=\'sigmoid\') ]).federated_computationdef federated_train(server_state, client_data): \"\"\"联邦平均算法\"\"\" server_model = server_state client_models = tff.federated_map( tff.tf_computation(lambda d: train_on_client(server_model, d), client_data ) # 安全聚合(加法同态加密) avg_weights = tff.federated_mean(client_models, weight=client_data.size) return avg_weightsdef train_on_client(server_weights, client_data): \"\"\"客户端本地训练\"\"\" model = create_client_model() model.set_weights(server_weights) model.compile(optimizer=\'adam\', loss=\'binary_crossentropy\',  metrics=[\'AUC\']) # 差分隐私保护 dp_optimizer = tf.keras.optimizers.Adam( learning_rate=0.01, noise_multiplier=0.3, # 噪声参数 l2_norm_clip=1.0 # 梯度裁剪 ) model.fit(client_data, epochs=5, optimizer=dp_optimizer) return model.get_weights()# 区块链存证class BlockchainLedger: \"\"\"联邦学习过程上链存证\"\"\" def __init__(self): self.chain = [] self.current_transactions = [] def add_block(self, model_hash, round_id): block = { \'index\': len(self.chain) + 1, \'round\': round_id, \'model_hash\': model_hash, \'timestamp\': time.time() } self.chain.append(block) return block

第四届电力系统与能源技术国际会议(ICPSET 2025)

  • 2025 4th International Conference on Power System and Energy Technology
  • ⏰ 时间:2025.7.18-20 | 📍 地点:中国·成都
  • 🌐 官网:ICPSET 2025
  • 📚 检索:IEEE出版,EI/Scopus/IEEE Xplore三检(ISBN:979-8-3315-0158-7)
  • 💡 亮点:川渝能源走廊聚焦虚拟电厂博弈算法与新型储能系统集成技术突破。
  • 👥 适合人群:电力系统优化博士生、新能源科创企业技术骨干。
  • 算法示例:数字孪生驱动的智能电网弹性优化
# 基于深度强化学习的电网自愈控制(PyTorchimport torchimport gymfrom stable_baselines3 import PPOclass GridResilienceEnv(gym.Env): \"\"\"电网弹性数字孪生环境\"\"\" def __init__(self): self.state_dim = 12 # [负载率*4区域, 新能源出力, 储能SOC, 故障标志位] self.action_space = spaces.Discrete(8) # 开关操作组合 self.observation_space = spaces.Box(0, 2, (self.state_dim,)) def step(self, action): # 数字孪生核心:物理-信息系统交互 self._apply_action(action) # 执行开关操作 next_state = self._simulate() # 电力系统仿真 reward = self._calc_reward() # 综合奖励函数 return next_state, reward, False, {} def _simulate(self): \"\"\"基于PSCAD/EMTP的实时仿真\"\"\" # 简化为线性动态系统 A = np.diag([0.95]*12) + np.random.normal(0, 0.01, (12,12)) return A @ self.state def _calc_reward(self): \"\"\"多目标奖励:供电恢复+设备安全+经济损失\"\"\" load_recovery = 1.0 - np.sum(self.state[0:4] > 1.2) / 4 equipment_safety = 0.8 if np.max(self.state[4:8]) < 1.5 else 0.2 economic_loss = -0.01 * np.sum(self.state[8:12]) return load_recovery + equipment_safety + economic_loss# 量子计算加速的拓扑优化def quantum_optimize_topology(grid_graph): \"\"\"使用量子退火求解最优网络结构\"\"\" from dwave.system import DWaveSampler, EmbeddingComposite # 构建QUBO模型 Q = {} for i in range(len(grid_graph.nodes)): Q[(i,i)] = -1 * grid_graph.nodes[i][\'load\'] # 节点权重 for (i,j) in grid_graph.edges: Q[(i,j)] = 2.0 * grid_graph.edges[(i,j)][\'capacity\'] sampler = EmbeddingComposite(DWaveSampler()) sampleset = sampler.sample_qubo(Q, num_reads=100) return sampleset.first.sample

第二届云计算与大数据国际会议(ICCBD 2025)

  • 2025 2nd International Conference on Cloud Computing and Big Data
  • ⏰ 时间:2025.7.25-27丨📍 地点:中国·六安
  • 🌐 官网:ICCBD 2025
  • 📚 检索:EI Compendex/Scopus
  • 💡 亮点:ACM出版社护航,算力革命重塑数据洪流,EI/Scopus双通道保障检索稳定性。
  • 👥 适合人群:分布式系统架构师、数据湖治理专家、AIops工程师,聚焦新型基础设施建设的实践派。
  • 算法示例:存算一体化的Serverless架构优化
# 基于LLM的智能资源编排框架import transformersfrom kubernetes import client, configclass AIOrchestrator: \"\"\"LLM驱动的云资源调度器\"\"\" def __init__(self): self.llm = transformers.pipeline( \"text-generation\", model=\"meta-llama/Meta-Llama-3-70B-Instruct\" ) config.load_kube_config() self.api = client.AppsV1Api() def optimize_deployment(self, workload_desc): \"\"\"生成最优部署策略\"\"\" prompt = f\"\"\" 作为云架构专家,请为以下工作负载设计K8s部署方案: {workload_desc} 要求: 1. 根据计算强度选择实例类型(CPU密集型/GPU加速) 2. 按区域延迟需求放置 3. 成本优化(spot实例占比>40%) 4. 输出YAML配置 \"\"\" response = self.llm(prompt, max_new_tokens=500) return self._extract_yaml(response[0][\'generated_text\']) def auto_scale(self, metrics): \"\"\"实时弹性伸缩\"\"\" prompt = f\"\"\" 当前集群指标:CPU={metrics[\'cpu\']}%, MEM={metrics[\'mem\']}% 历史负载趋势:{metrics[\'trend\']} 预测未来5分钟负载并给出扩缩容建议(格式:replicas=N) \"\"\" decision = self.llm(prompt, max_new_tokens=50) new_replicas = int(decision.split(\'replicas=\')[1].split()[0]) # 更新部署 deployment = self.api.read_namespaced_deployment(\"ai-workload\", \"default\") deployment.spec.replicas = new_replicas self.api.replace_namespaced_deployment(\"ai-workload\", \"default\", deployment)# 存算一体加速class ComputeInMemory: \"\"\"基于ReRAM的矩阵运算加速器\"\"\" def __init__(self, size=1024): self.memory = np.zeros((size, size)) # 模拟ReRAM交叉阵列 def matrix_multiply(self, A, B): \"\"\"存内计算实现矩阵乘法\"\"\" # 将B矩阵编程到ReRAM阵列 self.memory[:, :B.shape[1]] = B.T # 模拟电流计算 result = np.zeros((A.shape[0], B.shape[1])) for i in range(A.shape[0]): # 施加输入电压(A的行向量) current = np.dot(A[i], self.memory[:A.shape[1]]) result[i] = current return result