> 技术文档 > Matrix Theory study notes[6]

Matrix Theory study notes[6]


文章目录

  • linear space
  • references

linear space

  1. a basis of linear space V k V^k Vk,which is x 1 , x 2 , . . . x k x_1,x_2,...x_k x1,x2,...xk,can be called as a coordinate system.let vector v ∈ V k v \\in V^k vVk and it can be linear expressed on this basis as v = a 1x 1 + a 2x 2 + . . . + a kx k v=a_1x_1+a_2x_2+...+a_kx_k v=a1x1+a2x2+...+akxk,the a 1 , a 2 , . . . . , a k a_1,a_2,....,a_k a1,a2,....,ak is coordinate in this coordinate system denoted by ( a 1 , a 2 , . . . , a k) T (a_1,a_2,...,a_k)^T (a1,a2,...,ak)T.
  2. the various coordinate systems for the same vector are different usually because of non-uniqueness of basis of a linear space. for the first basis which is x 1 , x 2 , . . . x k x_1,x_2,...x_k x1,x2,...xk ,the coordinate is ( a 1 , a 2 , . . . , a k) T (a_1,a_2,...,a_k)^T (a1,a2,...,ak)T and there are the second basis x 1 ′ , x 2 ′ , . . . x k ′ x_1\',x_2\',...x_k\' x1,x2,...xk to coorespond another coordinate ( a 1 ′ , a 2 ′ , . . . , a k ′) T (a_1\',a_2\',...,a_k\')^T (a1,a2,...,ak)T,also can be explain that v = a 1x 1 + a 2x 2 + . . . + a kx k = a 1 ′x 1 ′ + a 2 ′x 2 ′ + . . . + a k ′x k ′ v=a_1x_1+a_2x_2+...+a_kx_k=a_1\'x_1\'+a_2\'x_2\'+...+a_k\'x_k\' v=a1x1+a2x2+...+akxk=a1x1+a2x2+...+akxk.
  3. let v ∈ V k v \\in V^k vVk and x 1 , x 2 , . . . x k x_1,x_2,...x_k x1,x2,...xk is a basis of linear space,then v v v can uniquely be separated into the linear combination that v = a 1x 1 + a 2x 2 + . . . + a kx k v=a_1x_1+a_2x_2+...+a_kx_k v=a1x1+a2x2+...+akxk.

references

  1. deepseek
  2. 矩阵论》