> 技术文档 > 【C++】第十七节—二叉搜索树(概念+性能分析+增删查+实现+使用场景)

【C++】第十七节—二叉搜索树(概念+性能分析+增删查+实现+使用场景)

好久不见,我是云边有个稻草人

《C++》本文所属专栏—持续更新中—欢迎订阅

目录

一、二叉搜索树的概念

二、二叉搜索树的性能分析

三、二叉搜索树的插入

SearchBinaryTree.h

test.cpp

四、⼆叉搜索树的查找

【只有一个3】

【有多个3】 

五、⼆叉搜索树的删除

六、二叉搜索树的实现代码

SearchBinaryTree.h

test.cpp 

七、二叉搜索树key和key/value使用场景

7.1 key搜索场景

7.2 key/value搜索场景

7.3 key/value⼆叉搜索树代码实现

.h

.cpp


正文开始——

一、二叉搜索树的概念

⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:

  • 若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值
  • 若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值
  • 它的左右⼦树也分别为⼆叉搜索树
  • ⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等值,multimap/multiset⽀持插⼊相等值


二、二叉搜索树的性能分析

最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全二叉树),其高度为: log2 N

最差情况下,⼆叉搜索树退化为单⽀树(或者类似单⽀),其高度为: N

所以综合而言⼆叉搜索树增删查改时间复杂度为: O(N)

那么这样的效率显然是⽆法满⾜我们需求的,我们后续需要继续讲解⼆叉搜索树的变形,平衡⼆叉搜索树AVL树和红⿊树,才能适⽤于我们在内存中存储和搜索数据。

另外需要说明的是,⼆分查找也可以实现 O(log2 N) 级别的查找效率,但是⼆分查找有两⼤缺陷:

  1. 需要存储在⽀持下标随机访问的结构中,并且有序。
  2. 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插⼊和删除数据⼀般需要挪动数据。

这⾥也就体现出了平衡⼆叉搜索树的价值。


三、二叉搜索树的插入

插⼊的具体过程如下:

  1. 树为空,则直接新增结点,赋值给root指针
  2. 树不空,按⼆叉搜索树性质,插⼊值比当前结点⼤往右走,插⼊值比当前结点⼩往左走,找到空位置,插⼊新结点。
  3. 如果⽀持插⼊相等的值,插⼊值跟当前结点相等的值可以往右⾛,也可以往左⾛,找到空位置,插⼊新结点。(要注意的是要保持逻辑⼀致性,插⼊相等的值不要⼀会往右⾛,⼀会往左⾛)
SearchBinaryTree.h
#pragma once#includeusing namespace std;templatestruct BSTNode{K _key;BSTNode* _left;BSTNode* _right;BSTNode(const K& key):_key(key), _left(nullptr), _right(nullptr){}};//class SearchBinaryTreetemplateclass BSTree{typedef BSTNode Node;public:bool Insert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key _right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key);if (parent->_key _right = cur;}else{parent->_left = cur;}return true;}void InOrder(){_InOrder(_root);cout <_left);cout <_key <_right);}Node* _root = nullptr;};
test.cpp
#include\"SearchBinaryTree.h\"#includeint main(){vector a = { 0, 3, 1, 10, 1, 6, 4, 7, 14, 13 };BSTree t;for (auto e : a){t.Insert(e);}t.InOrder();return 0;}

四、⼆叉搜索树的查找

  1. 从根开始⽐较,查找x,x⽐根的值⼤则往右边⾛查找,x比根值小则往左边走查找。
  2. 最多查找⾼度次,⾛到空,还没找到,这个值不存在。
  3. 如果不⽀持插⼊相等的值,找到x即可返回
  4. 如果支持插入相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。
【只有一个3】
bool Find(const K& key){Node* cur = _root;while (cur){if (key > cur->_key){cur = cur->_right;}else if (key _key){cur = cur->_left;}else{return true;}}return false;}
【有多个3】 

查找3,要求查找中序的第一个3。具体后面会讲


五、⼆叉搜索树的删除

⾸先查找元素是否在⼆叉搜索树中,如果不存在,则返回false。

如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)

  1. 要删除结点N左右孩⼦均为空
  2. 要删除的结点N左孩⼦为空,右孩⼦结点不为空
  3. 要删除的结点N右孩⼦为空,左孩⼦结点不为空
  4. 要删除的结点N左右孩⼦结点均不为空

对应以上四种情况的解决方案:

  1. 把N结点的⽗亲对应孩⼦指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是⼀样的)
  2. 把N结点的⽗亲对应孩⼦指针指向N的右孩⼦,直接删除N结点
  3. 把N结点的⽗亲对应孩⼦指针指向N的左孩⼦,直接删除N结点
  4. ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点 R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的 位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。

下面代码的实现思路:分为3种情况(将上面的情况1归为情况2或者是情况3) ,分为情况2,情况3,情况4来进行删除结点

bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key _key){parent = cur;cur = cur->_left;}else{//找到了,删除结点 //情况2if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{// 父亲指向我的右if (cur == parent->_right){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}delete cur;} //情况3else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_right){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}delete cur;} //情况4else{// 找右子树最小节点(最左)替代我的位置Node* minRightParent = cur;Node* minRight = cur->_right;while (minRight->_left){minRightParent = minRight;minRight = minRight->_left;}cur->_key = minRight->_key;if (minRightParent->_left == minRight){minRightParent->_left = minRight->_right;}else{minRightParent->_right = minRight->_right;}delete minRight;}return true;}}return false;}

六、二叉搜索树的实现代码

SearchBinaryTree.h
#pragma once#includeusing namespace std;templatestruct BSTNode{K _key;BSTNode* _left;BSTNode* _right;BSTNode(const K& key):_key(key), _left(nullptr), _right(nullptr){}};//class SearchBinaryTreetemplateclass BSTree{typedef BSTNode Node;public:bool Insert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key _right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key);if (parent->_key _right = cur;}else{parent->_left = cur;}return true;}bool Find(const K& key){Node* cur = _root;while (cur){if (key > cur->_key){cur = cur->_right;}else if (key _key){cur = cur->_left;}else{return true;}}return false;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key _key){parent = cur;cur = cur->_left;}else{//找到了,删除结点if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{// 父亲指向我的右if (cur == parent->_right){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}delete cur;}else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_right){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}delete cur;}else{// 找右子树最小节点(最左)替代我的位置Node* minRightParent = cur;Node* minRight = cur->_right;while (minRight->_left){minRightParent = minRight;minRight = minRight->_left;}cur->_key = minRight->_key;if (minRightParent->_left == minRight){minRightParent->_left = minRight->_right;}else{minRightParent->_right = minRight->_right;}delete minRight;}return true;}}return false;}void InOrder(){_InOrder(_root);cout <_left);cout <_key <_right);}Node* _root = nullptr;};
test.cpp 
#include\"SearchBinaryTree.h\"#includeint main(){vector a = { 0, 3, 1, 10, 1, 6, 4, 7, 14, 13 };BSTree t;for (auto e : a){t.Insert(e);}t.InOrder();//if (t.Find(300))//{//cout << \"找到了\" << endl;//}//else//{//cout << \"没找到\" << endl;//}t.Erase(8);t.InOrder();t.Erase(14);t.InOrder();t.Erase(1);t.InOrder();for (auto e : a){t.Erase(e);t.InOrder();}return 0;}

七、二叉搜索树key和key/value使用场景

7.1 key搜索场景

只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值,搜索场景只需要判断key在不在。key的搜索场景实现的⼆叉树搜索树⽀持增删查,但是不⽀持修改,修改key破坏搜索树结构了

场景1:⼩区⽆⼈值守⻋库,⼩区⻋库买了⻋位的业主⻋才能进⼩区,那么物业会把买了⻋位的业主的 ⻋牌号录⼊后台系统,⻋辆进⼊时扫描⻋牌在不在系统中,在则抬杆,不在则提示非本小区车辆,无法进⼊。

场景2:检查⼀篇英⽂章单词拼写是否正确,将词库中所有单词放入二叉搜索树,读取⽂章中的单词,查找是否在⼆叉搜索树中,不在则波浪线标红提示。

7.2 key/value搜索场景

每⼀个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修改key破坏搜索树性质了,可以修改value

场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中⽂),搜索时输⼊英⽂,则同时 查找到了英⽂对应的中⽂。

场景2:商场⽆⼈值守⻋库,⼊⼝进场时扫描车牌,记录车牌和入场时间,出口离场时,扫描车牌,查找入场时间,用当前时间-⼊场时间计算出停⻋时⻓,计算出停⻋费⽤,缴费后抬杆,车辆离场。 场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第⼀次 出现,(单词,1),单词存在,则++单词对应的次数。

7.3 key/value⼆叉搜索树代码实现
.h
templateclass BSTree{typedef BSTNode Node;public:bool Insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key, value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key _right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key, value);if (parent->_key _right = cur;}else{parent->_left = cur;}return true;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key _right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return nullptr;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key _right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{//删除if (cur->_left == nullptr){//if (parent == nullptr)if (cur == _root){_root = cur->_right;}else{// 父亲指向我的右if (cur == parent->_right){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}delete cur;}else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{// 父亲指向我的左if (cur == parent->_right){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}delete cur;}else{// 找右子树最小节点(最左)替代我的位置Node* minRightParent = cur;Node* minRight = cur->_right;while (minRight->_left){minRightParent = minRight;minRight = minRight->_left;}cur->_key = minRight->_key;if (minRightParent->_left == minRight){minRightParent->_left = minRight->_right;}else{minRightParent->_right = minRight->_right;}delete minRight;}return true;}}return false;}void InOrder(){_InOrder(_root);cout <_left);cout <_key << \" \" <_value <_right);}Node* _root = nullptr;};}
.cpp
int main(){string arr[] = { \"苹果\",\"香蕉\",\"香蕉\",\"西瓜\", \"苹果\", \"西瓜\", \"苹果\", \"苹果\", \"西瓜\",\"苹果\", \"香蕉\", \"苹果\", \"香蕉\",\"香蕉\",\"香蕉\" };key_value::BSTree countTree;for (auto& e : arr){//key_value::BSTNode* ret = countTree.Find(e);auto ret = countTree.Find(e);if (ret == nullptr){countTree.Insert(e, 1);}else{ret->_value++;}}countTree.InOrder();return 0;}

完——


冬眠_司南

快长大

至此结束——

我是云边有个稻草人

期待与你的下一次相遇......