【数据结构】排序算法---归并排序(动图演示)_归并排序动态图
文章目录
1. 定义
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
- 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
- 自下而上的迭代;
2. 算法步骤
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
3. 动图演示
4. 性质
稳定性:
归并排序是高效的基于比较的稳定排序算法。
空间复杂度:
归并排序可以只使用 O(1) O(1) O(1)大小的辅助空间,但为便捷通常使用与原数组等长的辅助数组。所以通常情况下空间复杂度为 O(n) O(n) O(n)
时间复杂度:
归并排序基于分治思想将数组分段排序后合并,时间复杂度在最优、最坏与平均情况下均为 O(nlogn) O(nlogn) O(nlogn)。
5. 算法分析
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) O(nlogn) O(nlogn)的时间复杂度。代价是需要额外的内存空间。
6. 代码实现
C语言——迭代版
int min(int x, int y) { return x < y ? x : y;}void merge_sort(int arr[], int len) { int *a = arr; int *b = (int *) malloc(len * sizeof(int)); int seg, start; for (seg = 1; seg < len; seg += seg) { for (start = 0; start < len; start += seg * 2) { int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } int *temp = a; a = b; b = temp; } if (a != arr) { int i; for (i = 0; i < len; i++) b[i] = a[i]; b = a; } free(b);}
C语言——递归版
void merge_sort_recursive(int arr[], int reg[], int start, int end) { if (start >= end) return; int len = end - start, mid = (len >> 1) + start; int start1 = start, end1 = mid; int start2 = mid + 1, end2 = end; merge_sort_recursive(arr, reg, start1, end1); merge_sort_recursive(arr, reg, start2, end2); int k = start; while (start1 <= end1 && start2 <= end2) reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++]; while (start1 <= end1) reg[k++] = arr[start1++]; while (start2 <= end2) reg[k++] = arr[start2++]; for (k = start; k <= end; k++) arr[k] = reg[k];}void merge_sort(int arr[], const int len) { int reg[len]; merge_sort_recursive(arr, reg, 0, len - 1);}
Python
def mergeSort(arr): import math if(len(arr)<2): return arr middle = math.floor(len(arr)/2) left, right = arr[0:middle], arr[middle:] return merge(mergeSort(left), mergeSort(right))def merge(left,right): result = [] while left and right: if left[0] <= right[0]: result.append(left.pop(0)) else: result.append(right.pop(0)); while left: result.append(left.pop(0)) while right: result.append(right.pop(0)); return result
Java
public class MergeSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); if (arr.length < 2) { return arr; } int middle = (int) Math.floor(arr.length / 2); int[] left = Arrays.copyOfRange(arr, 0, middle); int[] right = Arrays.copyOfRange(arr, middle, arr.length); return merge(sort(left), sort(right)); } protected int[] merge(int[] left, int[] right) { int[] result = new int[left.length + right.length]; int i = 0; while (left.length > 0 && right.length > 0) { if (left[0] <= right[0]) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } else { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } } while (left.length > 0) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } while (right.length > 0) { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } return result; }}
C++——迭代版
template<typename T> // 整数或浮点数皆可使用,若要使用物件(class)时必须设定\"小与\"(<)的运算子功能void merge_sort(T arr[], int len) { T *a = arr; T *b = new T[len]; for (int seg = 1; seg < len; seg += seg) { for (int start = 0; start < len; start += seg + seg) { int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len); int k = low; int start1 = low, end1 = mid; int start2 = mid, end2 = high; while (start1 < end1 && start2 < end2) b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++]; while (start1 < end1) b[k++] = a[start1++]; while (start2 < end2) b[k++] = a[start2++]; } T *temp = a; a = b; b = temp; } if (a != arr) { for (int i = 0; i < len; i++) b[i] = a[i]; b = a; } delete[] b;}
C++——递归版
void Merge(vector<int> &Array, int front, int mid, int end) { // preconditions: // Array[front...mid] is sorted // Array[mid+1 ... end] is sorted // Copy Array[front ... mid] to LeftSubArray // Copy Array[mid+1 ... end] to RightSubArray vector<int> LeftSubArray(Array.begin() + front, Array.begin() + mid + 1); vector<int> RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1); int idxLeft = 0, idxRight = 0; LeftSubArray.insert(LeftSubArray.end(), numeric_limits<int>::max()); RightSubArray.insert(RightSubArray.end(), numeric_limits<int>::max()); // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i] for (int i = front; i <= end; i++) { if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) { Array[i] = LeftSubArray[idxLeft]; idxLeft++; } else { Array[i] = RightSubArray[idxRight]; idxRight++; } }}void MergeSort(vector<int> &Array, int front, int end) { if (front >= end) return; int mid = (front + end) / 2; MergeSort(Array, front, mid); MergeSort(Array, mid + 1, end); Merge(Array, front, mid, end);}
Go
func mergeSort(arr []int) []int { length := len(arr) if length < 2 { return arr } middle := length / 2 left := arr[0:middle] right := arr[middle:] return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int { var result []int for len(left) != 0 && len(right) != 0 { if left[0] <= right[0] { result = append(result, left[0]) left = left[1:] } else { result = append(result, right[0]) right = right[1:] } } for len(left) != 0 { result = append(result, left[0]) left = left[1:] } for len(right) != 0 { result = append(result, right[0]) right = right[1:] } return result}
结语
今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下。
也可以点点关注,避免以后找不到我哦!
Crossoads主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是作者前进的动力!
带你初步了解排序算法:https://blog.csdn.net/2301_80191662/article/details/142211265
直接插入排序:https://blog.csdn.net/2301_80191662/article/details/142300973
希尔排序:https://blog.csdn.net/2301_80191662/article/details/142302553
直接选择排序:https://blog.csdn.net/2301_80191662/article/details/142312028
堆排序:https://blog.csdn.net/2301_80191662/article/details/142312338
冒泡排序:https://blog.csdn.net/2301_80191662/article/details/142324131
快速排序:https://blog.csdn.net/2301_80191662/article/details/142324307
归并排序:https://blog.csdn.net/2301_80191662/article/details/142350640
计数排序:https://blog.csdn.net/2301_80191662/article/details/142350741
桶排序:https://blog.csdn.net/2301_80191662/article/details/142375338
基数排序:https://blog.csdn.net/2301_80191662/article/details/142375592
十大经典排序算法总结与分析:https://blog.csdn.net/2301_80191662/article/details/142211564