> 技术文档 > Matrix Theory study notes[6] 								  
							 
						
			
				
    	
			
				Matrix Theory study notes[6]
                    
                        网友:Bloger 
                        技术文档 
                        2025-09-02 11:13:32
                        
                       
                     
            	
            
                
				
linear space
- a basis of linear space  V k  V^k  Vk,which is  x 1 , x 2 , . . . x k  x_1,x_2,...x_k  x1,x2,...xk,can be called as a coordinate system.let vector  v ∈ V k  v \\in V^k  v∈Vk and it can be linear expressed on this basis as  v = a 1x 1 + a 2x 2 + . . . + a kx k  v=a_1x_1+a_2x_2+...+a_kx_k  v=a1x1+a2x2+...+akxk,the  a 1 , a 2 , . . . . , a k  a_1,a_2,....,a_k  a1,a2,....,ak is coordinate in this coordinate system denoted by  ( a 1 , a 2 , . . . , a k) T  (a_1,a_2,...,a_k)^T  (a1,a2,...,ak)T.
 
- the various coordinate systems for the same vector are different usually because of non-uniqueness of basis of a linear space. for the first basis which is  x 1 , x 2 , . . . x k  x_1,x_2,...x_k  x1,x2,...xk ,the coordinate is  ( a 1 , a 2 , . . . , a k) T  (a_1,a_2,...,a_k)^T  (a1,a2,...,ak)T and there are the second basis  x 1 ′ , x 2 ′ , . . . x k ′  x_1\',x_2\',...x_k\'  x1′,x2′,...xk′ to coorespond another coordinate  ( a 1 ′ , a 2 ′ , . . . , a k ′) T  (a_1\',a_2\',...,a_k\')^T  (a1′,a2′,...,ak′)T,also can be explain that  v = a 1x 1 + a 2x 2 + . . . + a kx k = a 1 ′x 1 ′ + a 2 ′x 2 ′ + . . . + a k ′x k ′  v=a_1x_1+a_2x_2+...+a_kx_k=a_1\'x_1\'+a_2\'x_2\'+...+a_k\'x_k\'  v=a1x1+a2x2+...+akxk=a1′x1′+a2′x2′+...+ak′xk′.
 
- let  v ∈ V k  v \\in V^k  v∈Vk and  x 1 , x 2 , . . . x k  x_1,x_2,...x_k  x1,x2,...xk is a basis of linear space,then  v v  v can uniquely be separated into the linear combination that  v = a 1x 1 + a 2x 2 + . . . + a kx k  v=a_1x_1+a_2x_2+...+a_kx_k  v=a1x1+a2x2+...+akxk.
 
references
- deepseek
 
- 《矩阵论》