【科研必备】2025年9月智能科技前沿:计算机视觉与数据挖掘、图像处理与目标检测、计算机信息科学与人工智能以及人工智能与计算社会科学等多个领域的创新探索
【科研必备】2025年9月智能科技前沿:计算机视觉与数据挖掘、图像处理与目标检测、计算机信息科学与人工智能以及人工智能与计算社会科学等多个领域的创新探索
【科研必备】2025年9月智能科技前沿:计算机视觉与数据挖掘、图像处理与目标检测、计算机信息科学与人工智能以及人工智能与计算社会科学等多个领域的创新探索
文章目录
- 【科研必备】2025年9月智能科技前沿:计算机视觉与数据挖掘、图像处理与目标检测、计算机信息科学与人工智能以及人工智能与计算社会科学等多个领域的创新探索
-
- 第六届计算机视觉与数据挖掘国际会议(ICCVDM 2025)
- 第四届图像处理与目标检测国际会议(IPODT 2025)
- 第八届计算机信息科学与人工智能国际会议(CISAI 2025)
- 2025人工智能与计算社会科学国际研讨会(AICSS 2025)
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/148877490
第六届计算机视觉与数据挖掘国际会议(ICCVDM 2025)
- 6th Int’l Conf. on Computer Vision & Data Mining
- ⏰ 时间:2025.9.12-14 | 🎡 地点:英国·伦敦(大英博物馆旁的科技盛宴)
- ✨ 亮点:7天闪电审稿!直击三维重建与智能数据分析交叉前沿
- 📚 检索:EI/Scopus双重保障
- 👥 适合:CV/数据科学研究者,诚邀图像识别与知识图谱硬核成果!
- 目标检测(YOLO算法)
import cv2import numpy as npdef detect_objects(image_path, config_path, weights_path, classes_path): # 加载YOLO模型 net = cv2.dnn.readNetFromDarknet(config_path, weights_path) # 加载类别名称 with open(classes_path, \'r\') as f: classes = f.read().strip().split(\'\\n\') # 加载图像 image = cv2.imread(image_path) (H, W) = image.shape[:2] # 获取输出层 ln = net.getLayerNames() ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] # 创建blob并进行前向传播 blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) outputs = net.forward(ln) # 处理输出 boxes = [] confidences = [] class_ids = [] for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: box = detection[0:4] * np.array([W, H, W, H]) (centerX, centerY, width, height) = box.astype(\"int\") x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) class_ids.append(class_id) # 应用非极大值抑制 indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) # 绘制结果 for i in indices.flatten(): (x, y) = (boxes[i][0], boxes[i][1]) (w, h) = (boxes[i][2], boxes[i][3]) cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(image, f\"{classes[class_ids[i]]}: {confidences[i]:.2f}\", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.imshow(\"Object Detection\", image) cv2.waitKey(0)# 示例用法if __name__ == \"__main__\": detect_objects( image_path=\"image.jpg\", config_path=\"yolov3.cfg\", weights_path=\"yolov3.weights\", classes_path=\"coco.names\" )
第四届图像处理与目标检测国际会议(IPODT 2025)
- 4th Int’l Conf. on Image Proc., Object Detection & Tracking
- ⏰ 时间:2025.9.19-21 | 🏞️ 地点:中国·桂林(山水甲天下的视觉算法圣地)
- ✨ 亮点:SPIE光学工程协会权威出版!攻克多目标跟踪与实时检测技术壁垒
- 📚 检索:SPIE出版+EI/Scopus双检索
- 👥 适合:图像处理/安防监控领域硕博生,急需目标识别与轨迹预测新模型!
- 基于U-Net的图像分割
import numpy as npfrom tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenatefrom tensorflow.keras.models import Modeldef create_unet(input_shape): inputs = Input(shape=input_shape) # 下采样路径 conv1 = Conv2D(64, 3, activation=\'relu\', padding=\'same\')(inputs) conv1 = Conv2D(64, 3, activation=\'relu\', padding=\'same\')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation=\'relu\', padding=\'same\')(pool1) conv2 = Conv2D(128, 3, activation=\'relu\', padding=\'same\')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation=\'relu\', padding=\'same\')(pool2) conv3 = Conv2D(256, 3, activation=\'relu\', padding=\'same\')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation=\'relu\', padding=\'same\')(pool3) conv4 = Conv2D(512, 3, activation=\'relu\', padding=\'same\')(conv4) # 上采样路径 up5 = UpSampling2D(size=(2, 2))(conv4) merge5 = concatenate([conv3, up5], axis=3) conv5 = Conv2D(256, 3, activation=\'relu\', padding=\'same\')(merge5) conv5 = Conv2D(256, 3, activation=\'relu\', padding=\'same\')(conv5) up6 = UpSampling2D(size=(2, 2))(conv5) merge6 = concatenate([conv2, up6], axis=3) conv6 = Conv2D(128, 3, activation=\'relu\', padding=\'same\')(merge6) conv6 = Conv2D(128, 3, activation=\'relu\', padding=\'same\')(conv6) up7 = UpSampling2D(size=(2, 2))(conv6) merge7 = concatenate([conv1, up7], axis=3) conv7 = Conv2D(64, 3, activation=\'relu\', padding=\'same\')(merge7) conv7 = Conv2D(64, 3, activation=\'relu\', padding=\'same\')(conv7) outputs = Conv2D(1, 1, activation=\'sigmoid\')(conv7) model = Model(inputs=inputs, outputs=outputs) model.compile(optimizer=\'adam\', loss=\'binary_crossentropy\', metrics=[\'accuracy\']) return model# 示例用法if __name__ == \"__main__\": input_shape = (256, 256, 3) # 输入图像形状 model = create_unet(input_shape) model.summary()
第八届计算机信息科学与人工智能国际会议(CISAI 2025)
- 8th Int’l Conf. on Computer Info. Science & Artificial Intelligence
- ⏰ 时间:2025.9.12-14 | 🌉 地点:中国·武汉(光谷核心的AI竞技场)
- ✨ 亮点:2周极速反馈!解锁自然语言处理与智能决策系统新突破
- 📚 检索:EI Compendex & Scopus双引擎认证
- 👥 适合:计算机/人工智能方向硕博生,亟需算法优化与系统架构创新方案!
- 基于LSTM的文本生成算法
import numpy as npfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import LSTM, Dense, Embeddingdef create_text_generator(vocab_size, seq_length): \"\"\" 创建一个基于LSTM的文本生成模型。 :param vocab_size: 词汇表大小 :param seq_length: 输入序列长度 :return: Keras模型 \"\"\" model = Sequential() model.add(Embedding(vocab_size, 128, input_length=seq_length)) model.add(LSTM(256, return_sequences=True)) model.add(LSTM(256)) model.add(Dense(vocab_size, activation=\'softmax\')) model.compile(loss=\'categorical_crossentropy\', optimizer=\'adam\') return model# 示例:创建文本生成模型vocab_size = 10000 # 词汇表大小seq_length = 100 # 输入序列长度model = create_text_generator(vocab_size, seq_length)model.summary()
2025人工智能与计算社会科学国际研讨会(AICSS 2025)
- Int’l Symp. on AI & Computational Social Sciences
- ⏰ 时间:2025.9.19-21 | 🏯 地点:中国·北京(清华园里的社科AI实验室)
- ✨ 亮点:三重专家盲审加持!驱动社会仿真与政策智能决策深度融合
- 📚 检索:EI+Scopus权威双收录
- 👥 适合:计算社会科学交叉学者,征集社会网络分析与AI伦理创新研究!
- 基于图论的社区检测算法
import numpy as npimport networkx as nximport matplotlib.pyplot as pltdef louvain_community_detection(graph): \"\"\" 使用Louvain算法进行社区检测。 :param graph: 网络图(NetworkX图对象) :return: 社区划分 \"\"\" # 使用NetworkX的实现 import community as community_louvain partition = community_louvain.best_partition(graph) return partition# 示例:社区检测G = nx.karate_club_graph() # 使用Zachary空手道俱乐部图partition = louvain_community_detection(G)# 绘制社区划分pos = nx.spring_layout(G)cmap = plt.get_cmap(\'viridis\')nx.draw(G, pos, node_color=list(partition.values()), cmap=cmap)plt.title(\'Community Detection\')plt.show()