【分治法 BFS 质因数分解】P12255 [蓝桥杯 2024 国 Java B] 园丁|普及+
本文涉及知识点
数论:质数、最大公约数、菲蜀定理
C++BFS算法
P12255 [蓝桥杯 2024 国 Java B] 园丁
题目描述
小明是一位尽职尽责的园丁。这天他负责维护一棵树,树上有 n n n 个结点 1,2,…,n 1, 2, \\ldots, n 1,2,…,n,根结点为 1 1 1,结点 i i i 的权值为 a i a_i ai。他需要更改一些结点的权值为任意正整数,使得对于任意一个至少有 2 2 2 个儿子结点的结点 i i i 满足:任意两个 i i i 的儿子结点的权值的乘积都不是完全平方数。请问小明至少需要修改多少个结点的权值?
输入格式
输入共 n+1 n+1 n+1 行。
第一行为一个正整数 n n n。
第二行为 n n n 个由空格分开的正整数 a 1 , a 2 ,…, a n a_1, a_2, \\ldots, a_n a1,a2,…,an。
后面 n−1 n-1 n−1 行,每行两个正整数表示树上的一条边。
输出格式
输出共 1 1 1 行,一个整数表示答案。
输入输出样例 #1
输入 #1
61 2 9 8 4 41 21 31 42 52 6
输出 #1
2
说明/提示
样例说明
其中一种方案:将结点 2,5 2, 5 2,5 的权值分别修改为 3,2 3, 2 3,2。
评测用例规模与约定
- 对于 20 % 20\\% 20% 的评测用例,保证 n ≤ 10 3 n \\leq 10^3 n≤103。
- 对于 100 % 100\\% 100% 的评测用例,保证 1 ≤ n ≤ 10 5 1\\leq n \\leq 10^5 1≤n≤105, 1 ≤ a i ≤ 10 9 1 \\leq a_i \\leq 10^9 1≤ai≤109。
P12255 [蓝桥杯 2024 国 Java B] 园丁
分治法:枚举cur的孩子。非兄弟节点,无影响。
性质一: X=x1×x2×x2,x×y是否是完全平方数 ⟺ x1×y是否是完全平方数 X=x1\\times x2 \\times x2,x \\times y 是否是完全平方数 \\iff x1 \\times y 是否是完全平方数 X=x1×x2×x2,x×y是否是完全平方数⟺x1×y是否是完全平方数,f(x):如果x包括相同的因子x2,x/=(x2x2)。
性质二: x×y是完全平方数,则f(x)==f(y) x \\times y 是完全平方数,则f(x)==f(y) x×y是完全平方数,则f(x)==f(y)。
w[i]=f(w[i])。BFS或DFS求出各节点的孩子,依次处理。如果cur的孩子某个权重有c个,则ans += c-1。
时间复杂度:O(nsqrt(1e9)) 可以只枚举小于等于sqrt(1e9)的质数。理论上超时。实际上可以过。
代码
核心代码
#include #include #include #include#include#include#include#include#include#include#include#include #include#include#include #include #include#include#include#include#include using namespace std;template<class T1, class T2>std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {in >> pr.first >> pr.second;return in;}template<class T1, class T2, class T3 >std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t);return in;}template<class T1, class T2, class T3, class T4 >std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);return in;}template<class T1, class T2, class T3, class T4, class T5, class T6, class T7 >std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4,T5,T6,T7>& t) {in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t) >> get<4>(t) >> get<5>(t) >> get<6>(t);return in;}template<class T = int>vector<T> Read() {int n;cin >> n;vector<T> ret(n);for (int i = 0; i < n; i++) {cin >> ret[i];}return ret;}template<class T = int>vector<T> ReadNotNum() {vector<T> ret;T tmp;while (cin >> tmp) {ret.emplace_back(tmp);if (\'\\n\' == cin.get()) { break; }}return ret;}template<class T = int>vector<T> Read(int n) {vector<T> ret(n);for (int i = 0; i < n; i++) {cin >> ret[i];}return ret;}template<int N = 1\'000\'000>class COutBuff{public:COutBuff() {m_p = puffer;}template<class T>void write(T x) {int num[28], sp = 0;if (x < 0)*m_p++ = \'-\', x = -x;if (!x)*m_p++ = 48;while (x)num[++sp] = x % 10, x /= 10;while (sp)*m_p++ = num[sp--] + 48;AuotToFile();}void writestr(const char* sz) {strcpy(m_p, sz);m_p += strlen(sz);AuotToFile();}inline void write(char ch){*m_p++ = ch;AuotToFile();}inline void ToFile() {fwrite(puffer, 1, m_p - puffer, stdout);m_p = puffer;}~COutBuff() {ToFile();}private:inline void AuotToFile() {if (m_p - puffer > N - 100) {ToFile();}}char puffer[N], * m_p;};template<int N = 1\'000\'000>class CInBuff{public:inline CInBuff() {}inline CInBuff<N>& operator>>(char& ch) {FileToBuf();while ((\'\\r\' == *S) || (\'\\n\' == *S) || (\' \' == *S)) { S++; }//忽略空格和回车ch = *S++;return *this;}inline CInBuff<N>& operator>>(int& val) {FileToBuf();int x(0), f(0);while (!isdigit(*S))f |= (*S++ == \'-\');while (isdigit(*S))x = (x << 1) + (x << 3) + (*S++ ^ 48);val = f ? -x : x; S++;//忽略空格换行return *this;}inline CInBuff& operator>>(long long& val) {FileToBuf();long long x(0); int f(0);while (!isdigit(*S))f |= (*S++ == \'-\');while (isdigit(*S))x = (x << 1) + (x << 3) + (*S++ ^ 48);val = f ? -x : x; S++;//忽略空格换行return *this;}template<class T1, class T2>inline CInBuff& operator>>(pair<T1, T2>& val) {*this >> val.first >> val.second;return *this;}template<class T1, class T2, class T3>inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {*this >> get<0>(val) >> get<1>(val) >> get<2>(val);return *this;}template<class T1, class T2, class T3, class T4>inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);return *this;}template<class T = int>inline CInBuff& operator>>(vector<T>& val) {int n;*this >> n;val.resize(n);for (int i = 0; i < n; i++) {*this >> val[i];}return *this;}template<class T = int>vector<T> Read(int n) {vector<T> ret(n);for (int i = 0; i < n; i++) {*this >> ret[i];}return ret;}template<class T = int>vector<T> Read() {vector<T> ret;*this >> ret;return ret;}private:inline void FileToBuf() {const int canRead = m_iWritePos - (S - buffer);if (canRead >= 100) { return; }if (m_bFinish) { return; }for (int i = 0; i < canRead; i++){buffer[i] = S[i];//memcpy出错}m_iWritePos = canRead;buffer[m_iWritePos] = 0;S = buffer;int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);if (readCnt <= 0) { m_bFinish = true; return; }m_iWritePos += readCnt;buffer[m_iWritePos] = 0;S = buffer;}int m_iWritePos = 0; bool m_bFinish = false;char buffer[N + 10], * S = buffer;};template<class T = int>class CUniqueFactorization{public:CUniqueFactorization(T iPrime, int cnt) {m_data.emplace_back(iPrime, cnt);}CUniqueFactorization(vector<T> primes = {}, vector<int> cnts = {}) {for (int i = 0; i < primes.size(); i++) {m_data.emplace_back(primes[i], cnts[i]);}}CUniqueFactorization operator+ (const CUniqueFactorization& o)const {return Add(o, true);}CUniqueFactorization Add(const CUniqueFactorization& o, bool bIgornZero = false)const {CUniqueFactorization ret;int i = 0, j = 0;while ((i < m_data.size()) && (j < o.m_data.size())) {if (m_data[i].first == o.m_data[j].first) {int cnt = m_data[i].second + o.m_data[j].second;if ((0 != cnt) || !bIgornZero){ret.m_data.emplace_back(m_data[i].first, cnt);}i++, j++;}else if (m_data[i].first < o.m_data[j].first) {ret.m_data.emplace_back(m_data[i]);i++;}else {ret.m_data.emplace_back(o.m_data[j]);j++;}}ret.m_data.insert(ret.m_data.end(), m_data.begin() + i, m_data.end());ret.m_data.insert(ret.m_data.end(), o.m_data.begin() + j, o.m_data.end());return ret;}CUniqueFactorization negation()const {CUniqueFactorization ret;ret = *this;for (auto& [i, cnt] : ret.m_data) {cnt *= -1;}return ret;}CUniqueFactorization GetValue(const CUniqueFactorization& o)const {CUniqueFactorization ret;for (const auto& [pri, cnt] : m_data) {ret.m_data.emplace_back(pri, 0);}return ret + o;};pair<T, T> Union()const {long long ll1 = 1, ll2 = 1;for (auto [pri, cnt] : m_data) {auto& ll = (cnt >= 0) ? ll1 : ll2;for (int j = 0; j < abs(cnt); j++) {ll *= pri;}//可以用快速指数幂加速}return { ll1,ll2 };}vector<pair<T, int>> m_data;};class CCreatePrime {public:CCreatePrime(int iMax) :m_isPrime(iMax + 1, true){m_isPrime[0] = m_isPrime[1] = false;for (int i = 2; i <= iMax; i++){if (m_isPrime[i]){m_vPrime.emplace_back(i);}for (const auto& n : m_vPrime){if ((long long)n * i > iMax) { break; }m_isPrime[n * i] = false;if (0 == i % n) { break; }}}}vector<int> m_vPrime;vector<bool> m_isPrime;};template<class T = int>class CUniqueFactorizationFactory {public:CUniqueFactorizationFactory(T iMax) :m_cc(sqrt(iMax) + 2), m_vPrime(m_cc.m_vPrime) {}CUniqueFactorization<T> Factorization(T x) {CUniqueFactorization<T> ret;for (const auto& iPre : m_vPrime) {int cnt = 0;while (0 == x % iPre) {cnt++;x /= iPre;}if (cnt > 0) {ret.m_data.emplace_back(iPre, cnt);}if (iPre * iPre > x) { break; }}if (x > 1) {ret.m_data.emplace_back(x, 1);}return ret;}const vector<int>& m_vPrime;protected:CCreatePrime m_cc;};class CNeiBo{public:static vector<vector<int>> Two(int n, const vector<pair<int, int>>& edges, bool bDirect, int iBase = 0){vector<vector<int>> vNeiBo(n);for (const auto& [i1, i2] : edges){vNeiBo[i1 - iBase].emplace_back(i2 - iBase);if (!bDirect){vNeiBo[i2 - iBase].emplace_back(i1 - iBase);}}return vNeiBo;}static vector<vector<int>> Two(int n, const vector<vector<int>>& edges, bool bDirect, int iBase = 0){vector<vector<int>> vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);}}return vNeiBo;}static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){vector<vector<std::pair<int, int>>> vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}return vNeiBo;}static vector<vector<std::pair<int, int>>> Three(int n, const vector<tuple<int, int, int>>& edges, bool bDirect, int iBase = 0){vector<vector<std::pair<int, int>>> vNeiBo(n);for (const auto& [u, v, w] : edges){vNeiBo[u - iBase].emplace_back(v - iBase, w);if (!bDirect){vNeiBo[v - iBase].emplace_back(u - iBase, w);}}return vNeiBo;}static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat){vector<vector<int>> neiBo(neiBoMat.size());for (int i = 0; i < neiBoMat.size(); i++){for (int j = i + 1; j < neiBoMat.size(); j++){if (neiBoMat[i][j]){neiBo[i].emplace_back(j);neiBo[j].emplace_back(i);}}}return neiBo;}};class Solution {public:int Ans(vector<int>& a, vector<pair<int, int>>& edge) {static CUniqueFactorizationFactory uff(1000\'000\'000);for (auto& i : a) {auto uf = uff.Factorization(i);i = 1;for (const auto& [p, cnt] : uf.m_data) {if (cnt & 1) { i *= p; }}}auto neiBo = CNeiBo::Two(a.size(), edge, false, 1);function<void(int, int)> DFS = [&](int cur, int par) {unordered_map<int, int> m;for (const auto& next : neiBo[cur]) {if (next == par) { continue; }m[a[next]]++;DFS(next, cur);}for (const auto& [tmp, cnt] : m) {m_ans += (cnt - 1);}};DFS(0, -1);return m_ans;}int m_ans = 0;};int main() {#ifdef _DEBUGfreopen(\"a.in\", \"r\", stdin);#endif // DEBUGios::sync_with_stdio(0); cin.tie(nullptr);//CInBuff in; COutBuff ob;int N;cin >> N ;auto a = Read<int>(N);auto edge = Read<pair<int, int>>(N - 1);#ifdef _DEBUG//printf(\"N=%d,K=%d\", N,K);//Out(W, \",W=\");Out(edge, \",edge=\");////Out(grid, \",grid=\");Out(a, \",a=\");////Out(rr, \",rr=\"); // //Out(ab, \",ab=\"); // //Out(par, \"par=\"); // //Out(que, \"que=\"); // //Out(B, \"B=\");#endif // DEBUGauto res = Solution().Ans(a,edge);cout << res;return 0;};
单元测试
vector<int> a;vector<pair<int, int>> edge;TEST_METHOD(TestMethod11){edge = { {1,2},{1,3},{1,4},{2,5},{2,6} }, a = { 1,2,9,8,4,4 };auto res = Solution().Ans(a, edge);AssertEx(2, res);}
扩展阅读
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。