> 技术文档 > DeepEval测试框架:单元测试最佳实践

DeepEval测试框架:单元测试最佳实践


DeepEval测试框架:单元测试最佳实践

【免费下载链接】deepeval The Evaluation Framework for LLMs 【免费下载链接】deepeval 项目地址: https://gitcode.com/GitHub_Trending/de/deepeval

痛点:LLM应用测试的复杂性挑战

还在为LLM应用的不可预测性而头疼吗?传统单元测试难以应对大语言模型的非确定性输出,人工评估又耗时耗力。DeepEval作为专为LLM设计的评估框架,提供了革命性的解决方案,让LLM单元测试变得简单、可重复且自动化。

通过本文,你将掌握:

  • DeepEval核心概念与架构设计
  • 端到端与组件级测试的最佳实践
  • 多维度评估指标的选择与应用
  • CI/CD集成与性能优化策略
  • 实战案例与常见问题解决方案

DeepEval架构解析

DeepEval采用模块化设计,核心组件包括:

mermaid

测试用例类型对比

测试用例类型 适用场景 核心参数 评估指标 LLMTestCase 文本LLM应用 input, actual_output, context 所有非对话指标 MLLMTestCase 多模态应用 input(MLLMImage), actual_output 多模态指标 ConversationalTestCase 对话系统 messages, expected_messages 对话指标

端到端测试最佳实践

基础测试用例编写

import pytestfrom deepeval import assert_testfrom deepeval.test_case import LLMTestCasefrom deepeval.metrics import GEval, AnswerRelevancyMetricdef test_customer_service_chatbot(): # 创建测试用例 test_case = LLMTestCase( input=\"What if these shoes don\'t fit?\", actual_output=\"We offer a 30-day full refund at no extra cost.\", expected_output=\"You\'re eligible for a free full refund within 30 days.\", retrieval_context=[\"All customers are eligible for a 30 day refund policy.\"], context=[\"Refund policy: 30 days full refund\"] ) # 定义评估指标 correctness_metric = GEval( name=\"Correctness\", criteria=\"Determine if the actual output is correct based on expected output.\", evaluation_params=[LLMTestCaseParams.ACTUAL_OUTPUT, LLMTestCaseParams.EXPECTED_OUTPUT], threshold=0.7 ) answer_relevancy_metric = AnswerRelevancyMetric(threshold=0.8) # 执行断言测试 assert_test(test_case, [correctness_metric, answer_relevancy_metric])

测试数据集管理

from deepeval.dataset import EvaluationDataset, Golden# 创建评估数据集dataset = EvaluationDataset( goldens=[ Golden( input=\"What is your return policy?\", expected_output=\"30-day full refund\", context=[\"Return policy details\"] ), Golden( input=\"How long does shipping take?\", expected_output=\"3-5 business days\", context=[\"Shipping information\"] ) ])@pytest.mark.parametrize(\"golden\", dataset.goldens)def test_dataset_evaluation(golden): # 动态生成测试用例 test_case = LLMTestCase( input=golden.input, actual_output=your_llm_app(golden.input), expected_output=golden.expected_output, context=golden.context ) metrics = [GEval(threshold=0.7), AnswerRelevancyMetric(threshold=0.8)] assert_test(test_case, metrics)

组件级测试深度实践

使用@observe装饰器进行细粒度追踪

from deepeval.tracing import observe, update_current_spanfrom deepeval.test_case import LLMTestCasefrom deepeval.metrics import FaithfulnessMetricfaithfulness_metric = FaithfulnessMetric(threshold=0.8)@observe(metrics=[faithfulness_metric])def retrieval_component(query: str): # 模拟检索组件 retrieved_docs = vector_db.search(query) update_current_span( test_case=LLMTestCase( input=query, retrieval_context=retrieved_docs, context=expected_retrieval_results[query] ) ) return retrieved_docs@observedef llm_generation_component(query: str, context: list): # 模拟LLM生成组件 response = llm.generate(f\"Answer based on: {context}\\n\\nQuestion: {query}\") update_current_span( test_case=LLMTestCase( input=query, actual_output=response, expected_output=expected_responses[query] ) ) return responsedef test_component_level_evaluation(): query = \"What is the refund policy?\" context = retrieval_component(query) response = llm_generation_component(query, context)

异步评估优化

import asynciofrom deepeval.evaluate.configs import AsyncConfigasync def test_async_evaluation(): test_cases = [ LLMTestCase(input=\"Q1\", actual_output=\"A1\"), LLMTestCase(input=\"Q2\", actual_output=\"A2\") ] async_config = AsyncConfig(run_async=True, max_concurrency=5) result = await evaluate( test_cases=test_cases, metrics=[AnswerRelevancyMetric()], async_config=async_config )

评估指标选择指南

指标选择矩阵

应用类型 核心指标 辅助指标 阈值建议 RAG系统 AnswerRelevancy, Faithfulness ContextualRecall, ContextualPrecision 0.7-0.8 对话机器人 ConversationCompleteness KnowledgeRetention, RoleAdherence 0.6-0.7 代码生成 GEval(Correctness) HallucinationMetric 0.7-0.8 多模态应用 VIEScore ImageCoherence, TextToImage 0.65-0.75

自定义指标开发

from deepeval.metrics import BaseMetricfrom deepeval.test_case import LLMTestCaseParamsclass CustomBusinessMetric(BaseMetric): def __init__(self, threshold: float = 0.8): super().__init__( name=\"BusinessLogic\", evaluation_params=[LLMTestCaseParams.ACTUAL_OUTPUT], threshold=threshold ) def measure(self, test_case: LLMTestCase): # 自定义业务逻辑评估 score = self._evaluate_business_rules(test_case.actual_output) self.score = score self.reason = f\"Business logic score: {score}\" return score def _evaluate_business_rules(self, output: str) -> float: # 实现具体的业务规则检查 rules = [ \"refund\" in output.lower(), \"30\" in output, \"day\" in output.lower() ] return sum(rules) / len(rules)

CI/CD集成策略

GitHub Actions配置示例

name: LLM Evaluationon: [push, pull_request]jobs: deepeval-test: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - name: Set up Python uses: actions/setup-python@v4 with: python-version: \'3.10\' - name: Install dependencies run: | pip install deepeval pip install -r requirements.txt - name: Run DeepEval tests run: | deepeval test run tests/ --n 4 --timeout 300 env: OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} DEEPEVAL_API_KEY: ${{ secrets.DEEPEVAL_API_KEY }} - name: Upload test results if: always() uses: actions/upload-artifact@v3 with: name: deepeval-results path: deepeval-results/

性能优化配置

from deepeval.evaluate.configs import AsyncConfig, ErrorConfig# 优化评估配置async_config = AsyncConfig( run_async=True, max_concurrency=10, timeout=30)error_config = ErrorConfig( skip_on_missing_params=True, continue_on_error=False)# 批量评估执行results = evaluate( test_cases=test_cases, metrics=metrics, async_config=async_config, error_config=error_config)

实战案例:电商客服机器人测试

测试场景设计

mermaid

完整测试套件

import pytestfrom deepeval import assert_testfrom deepeval.test_case import LLMTestCasefrom deepeval.metrics import ( AnswerRelevancyMetric, FaithfulnessMetric, GEval, HallucinationMetric)class TestEcommerceChatbot: @pytest.fixture def test_cases(self): return [ { \"input\": \"What is your return policy?\", \"expected\": \"30-day return policy\", \"context\": [\"Return within 30 days for full refund\"] }, { \"input\": \"How long does shipping take?\", \"expected\": \"3-5 business days\", \"context\": [\"Standard shipping: 3-5 business days\"] } ] def test_answer_relevancy(self, test_cases): for case in test_cases: test_case = LLMTestCase( input=case[\"input\"], actual_output=chatbot.respond(case[\"input\"]), retrieval_context=case[\"context\"] ) metric = AnswerRelevancyMetric(threshold=0.75) assert_test(test_case, [metric]) def test_faithfulness(self, test_cases): for case in test_cases: test_case = LLMTestCase( input=case[\"input\"], actual_output=chatbot.respond(case[\"input\"]), context=case[\"context\"] ) metric = FaithfulnessMetric(threshold=0.8) assert_test(test_case, [metric]) def test_correctness(self, test_cases): for case in test_cases: test_case = LLMTestCase( input=case[\"input\"], actual_output=chatbot.respond(case[\"input\"]), expected_output=case[\"expected\"] ) metric = GEval( name=\"Correctness\", criteria=\"Check if response matches expected answer\", threshold=0.7 ) assert_test(test_case, [metric])

常见问题与解决方案

问题1:测试执行缓慢

解决方案:

  • 使用异步评估:AsyncConfig(run_async=True, max_concurrency=8)
  • 启用缓存机制
  • 批量处理测试用例

问题2:误报率过高

解决方案:

  • 调整阈值:根据业务需求设置合适的threshold
  • 使用组合指标:多个指标共同决策
  • 添加人工审核环节

问题3:测试环境差异

解决方案:

  • 使用固定的LLM模型版本
  • 设置环境变量统一配置
  • 实施测试数据版本控制

总结与展望

DeepEval为LLM应用测试提供了完整的解决方案。通过本文的最佳实践,你可以:

  1. 构建可靠的测试体系:从端到端到组件级的全面覆盖
  2. 选择恰当的评估指标:根据应用类型精准选择评估维度
  3. 实现自动化测试流水线:CI/CD集成让测试成为开发流程的一部分
  4. 持续优化模型性能:基于测试反馈不断迭代改进

随着LLM技术的快速发展,DeepEval将继续演进,支持更多评估场景和更复杂的应用架构。建议定期关注项目更新,及时采用新的特性和最佳实践。

立即开始你的DeepEval之旅,让LLM应用测试变得简单、可靠、高效!

【免费下载链接】deepeval The Evaluation Framework for LLMs 【免费下载链接】deepeval 项目地址: https://gitcode.com/GitHub_Trending/de/deepeval

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考