【ECCV 2020 (oral)】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
【ECCV 2020 _oral】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
- 一、前言
- Abstract
- 1 Introduction
- 2 Related Work
- 3 Neural Radiance Field Scene Representation
- 4 Volume Rendering with Radiance Fields
- 5 Optimizing a Neural Radiance Field
-
- 5.1 Positional encoding
- 5.2 Hierarchical volume sampling
- 5.3 Implementation details
- 6 Results
-
- 6.1 Datasets
- 6.2 Comparisons
- 6.3 Discussion
- 6.4 Ablation studies
- 7 Conclusion
- A Additional Implementation Details
- B Additional Baseline Method Details
- C NDC ray space derivation
- D Additional Results
一、前言
Authors: Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
【Paper】 > 【Github_Code】 > 【Project】
Abstract
介绍:
我们提出了一种方法,通过使用稀疏的输入视图集优化底层连续体积场景函数,实现合成复杂场景的新颖视图的最先进的结果。
方法:
我们的算法使用全连接(非卷积)深度网络表示场景,其输入是单个连续 5D 坐标(空间位置 ( x , y , z ) (x,y,z)