【ECCV 2020 (oral)】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
【ECCV 2020 _oral】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
- 一、前言
 - Abstract
 - 1 Introduction
 - 2 Related Work
 - 3 Neural Radiance Field Scene Representation
 - 4 Volume Rendering with Radiance Fields
 - 5 Optimizing a Neural Radiance Field
 - 
- 5.1 Positional encoding
 - 5.2 Hierarchical volume sampling
 - 5.3 Implementation details
 
 - 6 Results
 - 
- 6.1 Datasets
 - 6.2 Comparisons
 - 6.3 Discussion
 - 6.4 Ablation studies
 
 - 7 Conclusion
 - A Additional Implementation Details
 - B Additional Baseline Method Details
 - C NDC ray space derivation
 - D Additional Results
 
一、前言
Authors: Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
【Paper】 > 【Github_Code】 > 【Project】
Abstract
介绍:我们提出了一种方法,通过使用稀疏的输入视图集优化底层连续体积场景函数,实现合成复杂场景的新颖视图的最先进的结果。
 方法:我们的算法使用全连接(非卷积)深度网络表示场景,其输入是单个连续 5D 坐标(空间位置  ( x , y , z ) (x,y,z) 


