虚拟地址-物理地址
虚拟地址和页表的由来
如果在没有虚拟内存和分⻚机制的情况下,每⼀个⽤⼾程序在物理内存上所对应的空间必须是连续的,如下图:
因为每⼀个程序的代码、数据⻓度都是不⼀样的,按照这样的映射⽅式,物理内存将会被分割成各种离散的、⼤⼩不同的块。经过⼀段运⾏时间之后,有些程序会退出,那么它们占据的物理内存空间不可以被回收,导致这些物理内存都是以很多碎⽚的形式存在。怎么办呢?我们希望操作系统提供给用户的空间必须是连续的,但是物理内存最好不要连续。此时虚拟内存和分⻚便出现了,如下图所示:
有了这种机制,CPU 便并⾮是直接访问物理内存地址,⽽是通过虚拟地址空间来间接的访问物理内存地址。所谓的虚拟地址空间,是操作系统为每⼀个正在执⾏的进程分配的⼀个逻辑地址,在32位机上,其范围从0 ~ 4G-1。
操作系统通过将虚拟地址空间和物理内存地址之间建⽴映射关系,也就是⻚表,这张表上记录了每⼀对⻚和⻚框的映射关系,能让CPU间接的访问物理内存地址。
把物理内存按照⼀个固定的⻓度的⻚框进⾏分割,有时叫做物理⻚。每个⻚框包含⼀个物理⻚(page)。⼀个⻚的⼤⼩等于⻚框的⼤⼩。⼤多数 32位 体系结构⽀持 4KB 的⻚,⽽ 64位 体系结构⼀般会⽀持 8KB 的⻚。
总结⼀下,其思想是将虚拟内存下的逻辑地址空间分为若⼲⻚,将物理内存空间分为若⼲⻚框,通过⻚表便能把连续的虚拟内存,映射到若⼲个不连续的物理内存⻚。(注意虚拟和物理的对应是虚拟页与物理页框的对应)
物理内存的管理
假设⼀个可⽤的物理内存有 4GB 的空间。按照⼀个⻚框的⼤⼩ 4KB 进⾏划分, 4GB 的空间就是4GB/4KB = 1048576 个⻚框。内核⽤ struct page 结构表⽰系统中的每个物理⻚,出于节省内存的考虑, struct page 中使⽤了⼤量