> 技术文档 > 2025最新版微软GraphRAG 2.0.0本地部署教程:基于Ollama快速构建知识图谱

2025最新版微软GraphRAG 2.0.0本地部署教程:基于Ollama快速构建知识图谱


一、前言

微软近期发布了知识图谱工具 GraphRAG 2.0.0,支持基于本地大模型(Ollama)快速构建知识图谱,显著提升了RAG(检索增强生成)的效果。本文手把手教你如何从零部署,并附踩坑记录和性能实测!

二、环境准备

1. 创建虚拟环境

推荐使用 Python 3.12.4(亲测兼容性较佳):

conda create -n graphrag200 python=3.12.4conda activate graphrag200

2. 拉取源码

建议通过Git下载最新代码(Windows用户需提前安装Git):

git clone https://github.com/microsoft/graphrag.gitcd graphrag

    (附:若直接下载压缩包解压,解压完后需创建一个仓库,不然后续会报错)

        创建仓库方法:

git initgit add .git commit -m \"Initial commit\"

3. 安装依赖

一键安装所需依赖包:

pip install -e .

4. 创建输入文件夹

用于存放待处理的文档(Windows可以直接手动创建):

mkdir -p ./graphrag_ollama/input

将数据集放入input目录即可。

三、关键配置修改

1. 初始化项目

执行初始化命令(注意与旧版参数不同):

python -m graphrag init --root ./graphrag_ollama

2. 修改settings.yaml

核心配置项(需按需调整)

  • 模型设置:使用Ollama本地模型

 注意修改一下圈出的几个地方

测试小文件时,建议把chunks改小:

 修改结果如下:

  • ### This config file contains required core defaults that must be set, along with a handful of common optional settings.### For a full list of available settings, see https://microsoft.github.io/graphrag/config/yaml/### LLM settings ##### There are a number of settings to tune the threading and token limits for LLM calls - check the docs.models: default_chat_model: type: openai_chat # or azure_openai_chat api_base: http://192.168.0.167:11434/v1 # api_version: 2024-05-01-preview auth_type: api_key # or azure_managed_identity api_key: ${GRAPHRAG_API_KEY} # set this in the generated .env file # audience: \"https://cognitiveservices.azure.com/.default\" # organization:  model: deepseek-r1:32b # deployment_name:  encoding_model: cl100k_base # automatically set by tiktoken if left undefined model_supports_json: true # recommended if this is available for your model. concurrent_requests: 25 # max number of simultaneous LLM requests allowed async_mode: threaded # or asyncio retry_strategy: native max_retries: -1  # set to -1 for dynamic retry logic (most optimal setting based on server response) tokens_per_minute: 0  # set to 0 to disable rate limiting requests_per_minute: 0 # set to 0 to disable rate limiting default_embedding_model: type: openai_embedding # or azure_openai_embedding api_base: http://192.168.0.167:11434/v1 # api_version: 2024-05-01-preview auth_type: api_key # or azure_managed_identity api_key: ${GRAPHRAG_API_KEY} # audience: \"https://cognitiveservices.azure.com/.default\" # organization:  model: bge-m3:latest # deployment_name:  encoding_model: cl100k_base # automatically set by tiktoken if left undefined model_supports_json: true # recommended if this is available for your model. concurrent_requests: 25 # max number of simultaneous LLM requests allowed async_mode: threaded # or asyncio retry_strategy: native max_retries: -1  # set to -1 for dynamic retry logic (most optimal setting based on server response) tokens_per_minute: 0  # set to 0 to disable rate limiting requests_per_minute: 0 # set to 0 to disable rate limitingvector_store: default_vector_store: type: lancedb db_uri: output\\lancedb container_name: default overwrite: Trueembed_text: model_id: default_embedding_model vector_store_id: default_vector_store### Input settings ###input: type: file # or blob file_type: text # or csv base_dir: \"input\" file_encoding: utf-8 file_pattern: \".*\\\\.txt$$\"chunks: size: 200 overlap: 50 group_by_columns: [id]### Output settings ##### If blob storage is specified in the following four sections,## connection_string and container_name must be providedcache: type: file # [file, blob, cosmosdb] base_dir: \"cache\"reporting: type: file # [file, blob, cosmosdb] base_dir: \"logs\"output: type: file # [file, blob, cosmosdb] base_dir: \"output\"### Workflow settings ###extract_graph: model_id: default_chat_model prompt: \"prompts/extract_graph.txt\" entity_types: [organization,person,geo,event] max_gleanings: 1summarize_descriptions: model_id: default_chat_model prompt: \"prompts/summarize_descriptions.txt\" max_length: 500extract_graph_nlp: text_analyzer: extractor_type: regex_english # [regex_english, syntactic_parser, cfg]extract_claims: enabled: false model_id: default_chat_model prompt: \"prompts/extract_claims.txt\" description: \"Any claims or facts that could be relevant to information discovery.\" max_gleanings: 1community_reports: model_id: default_chat_model graph_prompt: \"prompts/community_report_graph.txt\" text_prompt: \"prompts/community_report_text.txt\" max_length: 2000 max_input_length: 8000cluster_graph: max_cluster_size: 10embed_graph: enabled: false # if true, will generate node2vec embeddings for nodesumap: enabled: false # if true, will generate UMAP embeddings for nodes (embed_graph must also be enabled)snapshots: graphml: false embeddings: false### Query settings ##### The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.## See the config docs: https://microsoft.github.io/graphrag/config/yaml/#querylocal_search: chat_model_id: default_chat_model embedding_model_id: default_embedding_model prompt: \"prompts/local_search_system_prompt.txt\"global_search: chat_model_id: default_chat_model map_prompt: \"prompts/global_search_map_system_prompt.txt\" reduce_prompt: \"prompts/global_search_reduce_system_prompt.txt\" knowledge_prompt: \"prompts/global_search_knowledge_system_prompt.txt\"drift_search: chat_model_id: default_chat_model embedding_model_id: default_embedding_model prompt: \"prompts/drift_search_system_prompt.txt\" reduce_prompt: \"prompts/drift_search_reduce_prompt.txt\"basic_search: chat_model_id: default_chat_model embedding_model_id: default_embedding_model prompt: \"prompts/basic_search_system_prompt.txt\"

    四、构建知识图谱

    执行索引命令(算力警告:亲测4090-24G显卡处理2万字需3小时):

    python -m graphrag index --root ./graphrag_ollama

    五、知识图谱查询

    支持多种查询方式,按需选择:

  • 方法 命令示例 用途 全局查询 python -m graphrag query --method global --query \"知识图谱定义\" 跨文档综合分析 局部查询 python -m graphrag query --method local --query \"知识图谱定义\" 单文档精准检索 DRIFT查询 python -m graphrag query --method drift --query \"知识图谱定义\" 动态漂移分析 基础查询 python -m graphrag query --method basic --query \"知识图谱定义\" 传统RAG检索

六、注意事项

  1. 模型路径:确保Ollama服务已启动,且模型名称与配置一致(如deepseek-r1:32b需提前拉取)。

  2. 算力需求:小规模数据集建议使用GPU加速,CPU模式耗时可能成倍增加。

  3. 文件编码:输入文档需为UTF-8编码,否则可能报错。

  4. 配置备份:修改settings.yaml前建议备份原始文件。

七、总结

GraphRAG 2.0.0大幅优化了知识图谱的构建效率,结合本地模型可实现隐私安全的行业级应用。若遇到部署问题,欢迎在评论区留言交流!

相关资源

 GraphRAG GitHub仓库

Ollama模型库

原创声明:本文为作者原创,未经授权禁止转载。如需引用请联系作者。


点赞关注,技术不迷路! 👍
你的支持是我更新的最大动力! ⚡