MixNet解析以及pytorch源码
文章目录
- 摘要
- 大卷积核与小卷积核
- 分组卷积
- MinNet核心代码
- 完整代码:
摘要
MixConv 的主要思想是在单个深度卷积操作中混合多个不同大小的内核,以便它可以轻松地从输入图像中捕获不同类型的模式。 大核来捕获高分辨率的特征(我理解是全局的特征),又需要小核来捕获低分辨率的特征(我理解是图片的纹理特征),以提高模型的准确性和效率。网络结构如图:
这种特征拼接和Inceptions 有很多相似的地方,但是卷积采用分组卷积的方式,所以参数的计算量比较小。想要理解MixNet,首先要理解大小卷积核的优缺点,然后,理解分组卷积。
大卷积核与小卷积核
究竟是大卷积核好,还是小的卷积核好,这个大家一直在争论。CNN的鼻祖LeNet和惊艳到大家的AlexNet都使用了大卷积核。后来,到VGG开始使用3×3的卷积核,再发展到YOLOV4、5里面使用了大量的1×1的卷积核。
卷积核越大,receptive field(感受野)越大,看到的图片信息越多,因此获得的特征越好。但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,计算性能也会降低。
于是在VGG、Inception网络中,利用2个3×3卷积核的组合来代替1个5×5卷积核,感受野不变,计算量还得到降低。多个 3x3
的卷积层比一个大尺寸 filter
卷积层有更多的非线性(更多层的非线性函数),使得判决函数更加具有判决性。
正因为这些因素,导致了人们越来越喜欢小卷积核。
最近,人们又开始重新审视大卷积核,比如MixNet使用了3×3、5×5、7×7和9×9等,还有更猛的RepLKNet,直接使用31×31大小的卷积核。但是都不再是普通的卷积了,比如MixNet使用的是分组卷积,这样大大降低模型的计算量。
分组卷积
分组卷积则是对输入feature map进行分组,然后每组分别卷积。如下图:
分组卷积则是对输入feature map进行分组,然后每组分别卷积。
假设输入feature map的尺寸仍为 C 0 × H × W C_{0}\times H \times W C0×H×W,输出feature map的数量为 C 1 C_{1} C1个,如果设定要分成G个groups,则每组的输入feature map数量为C0 G \frac{C_{0}}{G} GC0,每组的输出feature map数量为C1 G \frac{C{1}}{G} GC1,每个卷积核的尺寸为C0 G × K × K \frac{C_{0}}{G}\times K \times K GC0×K×K,卷积核的总数仍为 C 1 C_{1} C1个,每组的卷积核数量为C1 G \frac{C{1}}{G} GC1,卷积核只与其同组的输入map进行卷积,卷积核的总参数量为 N × C0 G × K × K N\times \frac{C_{0}}{G}\times K \times K N×GC0×K×K,总参数量减少为原来的 1 G \frac{1}{G} G1。
计算量公式:
[ ( 2 × K 2× C 0/ g + 1 ) ×H×W× C o /g] × g \left[\left(2 \times K^{2} \times C_{0} / g +1\right) \times H \times W \times C_{o} / g\right] \times g [(2×K2×C0/g+1)×H×W×Co/g]×g
分组卷积的参数量为:
K ∗ K ∗ C 0 g ∗ C 1 g ∗ g K * K * \frac{C_{0}}{g} * \frac{C_{1}}{g} * g K∗K∗gC0∗gC1∗g
举例:
输入的尺寸是227×227×3,卷积核大小是11×11,输出是6,输出维度是55×55,group为3
我们带入公式可以计算出
参数量:
1 1 2 × 3 3 × 6 3 × 3 11^2 \times \frac{3}{3} \times \frac{6}{3} \times 3 112×33×36×3=726
运算量:
[(2×1 1 2 ×3/3+1) × 55 × 55 × 6 / 3 ] × 3 \left[\left(2 \times 11^{2} \times3 / 3 +1\right) \times 55 \times 55 \times 6 / 3\right] \times 3 [(2×112×3/3+1)×55×55×6/3]×3=2205225
MinNet核心代码
mixnet_s参数列表:
mixnet_s = [(16, 16, [3],[1], [1], 1, 1, 'ReLU', 0.0), (16, 24, [3],[1, 1], [1, 1], 2, 6, 'ReLU', 0.0), (24, 24, [3],[1, 1], [1, 1], 1, 3, 'ReLU', 0.0), (24, 40, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 80, [3, 5, 7], [1], [1, 1], 2, 6, 'Swish', 0.25), (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25), (80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 200, [3, 5, 7, 9, 11], [1], [1], 2, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)]
列的含义
第一列:in_channels,输入的通道。
第二列:out_channels,输出的通道。
第三列:卷积核的大小。
第四列:信道扩张,应用在MixNetBlock的扩展阶段。
第五列:信道映射,应用在MixNetBlock的末尾,映射输出通道。
第六列:stride,特征图缩放的倍数。
第七列:信道扩张的倍数。
第八列:激活函数
第九列:SE注意力机制放大的倍率。0代表没有SE。
行代表每个MixNetBlock的配置,MixNetBlock的代码如下:
class MixNetBlock(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=[3], expand_ksize=[1], project_ksize=[1], stride=1, expand_ratio=1, non_linear='ReLU', se_ratio=0.0 ): super(MixNetBlock, self).__init__() expand = (expand_ratio != 1) expand_channels = in_channels * expand_ratio se = (se_ratio != 0.0) self.residual_connection = (stride == 1 and in_channels == out_channels) conv = [] if expand: # 扩展阶段 pw_expansion = nn.Sequential( GroupedConv2d(in_channels, expand_channels, expand_ksize), nn.BatchNorm2d(expand_channels), NON_LINEARITY[non_linear] ) conv.append(pw_expansion) # depthwise convolution phase dw = nn.Sequential( MDConv(expand_channels, kernel_size, stride), nn.BatchNorm2d(expand_channels), NON_LINEARITY[non_linear] ) conv.append(dw) if se: # squeeze and excite squeeze_excite = SqueezeAndExcite(expand_channels, in_channels, se_ratio) conv.append(squeeze_excite) # projection phase pw_projection = nn.Sequential( GroupedConv2d(expand_channels, out_channels, project_ksize), nn.BatchNorm2d(out_channels) ) conv.append(pw_projection) self.conv = nn.Sequential(*conv) def forward(self, x): if self.residual_connection: return x + self.conv(x) else: return self.conv(x)
我们将网络打印出来,选择“(80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, ‘Swish’, 0.5),”这组配置,结合MixNetBlock的代码来学习。
(10): MixNetBlock( (conv): Sequential( (0): Sequential( (0): GroupedConv2d( (grouped_conv): ModuleList((0): Conv2d(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): Conv2d(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): Swish( (sigmoid): Sigmoid() ) ) (1): Sequential( (0): MDConv( (mixed_depthwise_conv): ModuleList((0): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=160, bias=False)(1): Conv2d(160, 160, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=160, bias=False)(2): Conv2d(160, 160, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=160, bias=False) ) ) (1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): Swish( (sigmoid): Sigmoid() ) ) (2): SqueezeAndExcite( (se_reduce): Conv2d(480, 40, kernel_size=(1, 1), stride=(1, 1)) (non_linear1): Swish( (sigmoid): Sigmoid() ) (se_expand): Conv2d(40, 480, kernel_size=(1, 1), stride=(1, 1)) (non_linear2): Sigmoid() ) (3): Sequential( (0): GroupedConv2d( (grouped_conv): ModuleList((0): Conv2d(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): Conv2d(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False) ) ) (1): BatchNorm2d(120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) )
pw_expansion:通道扩展,将80个通道拆为两个40的channel作为卷积的输出,输入的channel×expand_ratio作为扩张的输出,然后拼接位480channel的特征图。
将480的channel拆解位3个160的channel,分别输入到混合卷积中,混合卷积由3×3、5×5和7×7构成的分组卷积中,分组为160,计算完成后拼接成480channel的特征图。
将特征图数据SE注意力中,计算完成后得到480channel的特征图。
最后,将480channel的特征图拆为两个240的特征图,分别输入到1×1的卷积中,得到60channel的特征图,然后,做拼接,得到120channel的特征图。
完整代码:
import mathimport torchimport torch.nn as nnfrom torch.autograd import Variableclass Swish(nn.Module): def __init__(self): super(Swish, self).__init__() self.sigmoid = nn.Sigmoid() def forward(self, x): return x * self.sigmoid(x)NON_LINEARITY = { 'ReLU': nn.ReLU(inplace=True), 'Swish': Swish(),}def _RoundChannels(c, divisor=8, min_value=None): if min_value is None: min_value = divisor new_c = max(min_value, int(c + divisor / 2) // divisor * divisor) if new_c < 0.9 * c: new_c += divisor return new_cdef _SplitChannels(channels, num_groups): split_channels = [channels // num_groups for _ in range(num_groups)] split_channels[0] += channels - sum(split_channels) return split_channelsdef Conv3x3Bn(in_channels, out_channels, stride, non_linear='ReLU'): return nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear] )def Conv1x1Bn(in_channels, out_channels, non_linear='ReLU'): return nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear] )class SqueezeAndExcite(nn.Module): def __init__(self, channels, squeeze_channels, se_ratio): super(SqueezeAndExcite, self).__init__() squeeze_channels = squeeze_channels * se_ratio if not squeeze_channels.is_integer(): raise ValueError('channels must be divisible by 1/ratio') squeeze_channels = int(squeeze_channels) self.se_reduce = nn.Conv2d(channels, squeeze_channels, 1, 1, 0, bias=True) self.non_linear1 = NON_LINEARITY['Swish'] self.se_expand = nn.Conv2d(squeeze_channels, channels, 1, 1, 0, bias=True) self.non_linear2 = nn.Sigmoid() def forward(self, x): y = torch.mean(x, (2, 3), keepdim=True) y = self.non_linear1(self.se_reduce(y)) y = self.non_linear2(self.se_expand(y)) y = x * y return yclass GroupedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(GroupedConv2d, self).__init__() self.num_groups = len(kernel_size) self.split_in_channels = _SplitChannels(in_channels, self.num_groups) self.split_out_channels = _SplitChannels(out_channels, self.num_groups) print(self.split_in_channels) self.grouped_conv = nn.ModuleList() for i in range(self.num_groups): self.grouped_conv.append(nn.Conv2d( self.split_in_channels[i], self.split_out_channels[i], kernel_size[i], stride=stride, padding=padding, bias=False )) def forward(self, x): if self.num_groups == 1: return self.grouped_conv[0](x) x_split = torch.split(x, self.split_in_channels, dim=1) x = [conv(t) for conv, t in zip(self.grouped_conv, x_split)] x = torch.cat(x, dim=1) return xclass MDConv(nn.Module): def __init__(self, channels, kernel_size, stride): super(MDConv, self).__init__() self.num_groups = len(kernel_size) self.split_channels = _SplitChannels(channels, self.num_groups) self.mixed_depthwise_conv = nn.ModuleList() for i in range(self.num_groups): self.mixed_depthwise_conv.append(nn.Conv2d( self.split_channels[i], self.split_channels[i], kernel_size[i], stride=stride, padding=kernel_size[i] // 2, groups=self.split_channels[i], bias=False )) def forward(self, x): if self.num_groups == 1: return self.mixed_depthwise_conv[0](x) x_split = torch.split(x, self.split_channels, dim=1) x = [conv(t) for conv, t in zip(self.mixed_depthwise_conv, x_split)] x = torch.cat(x, dim=1) return xclass MixNetBlock(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=[3], expand_ksize=[1], project_ksize=[1], stride=1, expand_ratio=1, non_linear='ReLU', se_ratio=0.0 ): super(MixNetBlock, self).__init__() expand = (expand_ratio != 1) expand_channels = in_channels * expand_ratio se = (se_ratio != 0.0) self.residual_connection = (stride == 1 and in_channels == out_channels) conv = [] if expand: # expansion phase pw_expansion = nn.Sequential( GroupedConv2d(in_channels, expand_channels, expand_ksize), nn.BatchNorm2d(expand_channels), NON_LINEARITY[non_linear] ) conv.append(pw_expansion) # depthwise convolution phase dw = nn.Sequential( MDConv(expand_channels, kernel_size, stride), nn.BatchNorm2d(expand_channels), NON_LINEARITY[non_linear] ) conv.append(dw) if se: # squeeze and excite squeeze_excite = SqueezeAndExcite(expand_channels, in_channels, se_ratio) conv.append(squeeze_excite) # projection phase pw_projection = nn.Sequential( GroupedConv2d(expand_channels, out_channels, project_ksize), nn.BatchNorm2d(out_channels) ) conv.append(pw_projection) self.conv = nn.Sequential(*conv) def forward(self, x): if self.residual_connection: return x + self.conv(x) else: return self.conv(x)class MixNet(nn.Module): # [in_channels, out_channels, kernel_size, expand_ksize, project_ksize, stride, expand_ratio, non_linear, se_ratio] mixnet_s = [(16, 16, [3], [1], [1], 1, 1, 'ReLU', 0.0), (16, 24, [3], [1, 1], [1, 1], 2, 6, 'ReLU', 0.0), (24, 24, [3], [1, 1], [1, 1], 1, 3, 'ReLU', 0.0), (24, 40, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 80, [3, 5, 7], [1], [1, 1], 2, 6, 'Swish', 0.25), (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25), (80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 200, [3, 5, 7, 9, 11], [1], [1], 2, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)] mixnet_m = [(24, 24, [3], [1], [1], 1, 1, 'ReLU', 0.0), (24, 32, [3, 5, 7], [1, 1], [1, 1], 2, 6, 'ReLU', 0.0), (32, 32, [3], [1, 1], [1, 1], 1, 3, 'ReLU', 0.0), (32, 40, [3, 5, 7, 9], [1], [1], 2, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5), (40, 80, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.25), (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25), (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25), (80, 120, [3], [1], [1], 1, 6, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5), (120, 200, [3, 5, 7, 9], [1], [1], 2, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5), (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)] def __init__(self, net_type='mixnet_s', input_size=224, num_classes=1000, stem_channels=16, feature_size=1536, depth_multiplier=1.0): super(MixNet, self).__init__() if net_type == 'mixnet_s': config = self.mixnet_s stem_channels = 16 dropout_rate = 0.2 elif net_type == 'mixnet_m': config = self.mixnet_m stem_channels = 24 dropout_rate = 0.25 elif net_type == 'mixnet_l': config = self.mixnet_m stem_channels = 24 depth_multiplier *= 1.3 dropout_rate = 0.25 else: raise TypeError('Unsupported MixNet type') assert input_size % 32 == 0 # depth multiplier if depth_multiplier != 1.0: stem_channels = _RoundChannels(stem_channels * depth_multiplier) for i, conf in enumerate(config): conf_ls = list(conf) conf_ls[0] = _RoundChannels(conf_ls[0] * depth_multiplier) conf_ls[1] = _RoundChannels(conf_ls[1] * depth_multiplier) config[i] = tuple(conf_ls) # stem convolution self.stem_conv = Conv3x3Bn(3, stem_channels, 2) # building MixNet blocks layers = [] for in_channels, out_channels, kernel_size, expand_ksize, project_ksize, stride, expand_ratio, non_linear, se_ratio in config: layers.append(MixNetBlock( in_channels, out_channels, kernel_size=kernel_size, expand_ksize=expand_ksize, project_ksize=project_ksize, stride=stride, expand_ratio=expand_ratio, non_linear=non_linear, se_ratio=se_ratio )) self.layers = nn.Sequential(*layers) # last several layers self.head_conv = Conv1x1Bn(config[-1][1], feature_size) self.avgpool = nn.AvgPool2d(input_size // 32, stride=1) self.dropout = nn.Dropout(dropout_rate) self.classifier = nn.Linear(feature_size, num_classes) self._initialize_weights() def forward(self, x): x = self.stem_conv(x) x = self.layers(x) x = self.head_conv(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_()if __name__ == '__main__': net = MixNet() x_image = Variable(torch.randn(1, 3, 224, 224)) y = net(x_image)