> 文档中心 > MixNet解析以及pytorch源码

MixNet解析以及pytorch源码

文章目录

  • 摘要
  • 卷积核与小卷积核
  • 分组卷积
  • MinNet核心代码
  • 完整代码:

摘要

MixConv 的主要思想是在单个深度卷积操作中混合多个不同大小的内核,以便它可以轻松地从输入图像中捕获不同类型的模式。 大核来捕获高分辨率的特征(我理解是全局的特征),又需要小核来捕获低分辨率的特征(我理解是图片的纹理特征),以提高模型的准确性和效率。网络结构如图:

MixNet解析以及pytorch源码

这种特征拼接和Inceptions 有很多相似的地方,但是卷积采用分组卷积的方式,所以参数的计算量比较小。想要理解MixNet,首先要理解大小卷积核的优缺点,然后,理解分组卷积。

大卷积核与小卷积核

究竟是大卷积核好,还是小的卷积核好,这个大家一直在争论。CNN的鼻祖LeNet和惊艳到大家的AlexNet都使用了大卷积核。后来,到VGG开始使用3×3的卷积核,再发展到YOLOV4、5里面使用了大量的1×1的卷积核。

卷积核越大,receptive field(感受野)越大,看到的图片信息越多,因此获得的特征越好。但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,计算性能也会降低。

于是在VGG、Inception网络中,利用2个3×3卷积核的组合来代替1个5×5卷积核,感受野不变,计算量还得到降低。多个 3x3 的卷积层比一个大尺寸 filter卷积层有更多的非线性(更多层的非线性函数),使得判决函数更加具有判决性。

正因为这些因素,导致了人们越来越喜欢小卷积核。

最近,人们又开始重新审视大卷积核,比如MixNet使用了3×3、5×5、7×7和9×9等,还有更猛的RepLKNet,直接使用31×31大小的卷积核。但是都不再是普通的卷积了,比如MixNet使用的是分组卷积,这样大大降低模型的计算量。

分组卷积

分组卷积则是对输入feature map进行分组,然后每组分别卷积。如下图:

MixNet解析以及pytorch源码

分组卷积则是对输入feature map进行分组,然后每组分别卷积。

假设输入feature map的尺寸仍为 C 0 × H × W C_{0}\times H \times W C0×H×W,输出feature map的数量为 C 1 C_{1} C1个,如果设定要分成G个groups,则每组的输入feature map数量为C0 G \frac{C_{0}}{G} GC0,每组的输出feature map数量为C1 G \frac{C{1}}{G} GC1,每个卷积核的尺寸为C0 G × K × K \frac{C_{0}}{G}\times K \times K GC0×K×K,卷积核的总数仍为 C 1 C_{1} C1个,每组的卷积核数量为C1 G \frac{C{1}}{G} GC1,卷积核只与其同组的输入map进行卷积,卷积核的总参数量为 N × C0 G × K × K N\times \frac{C_{0}}{G}\times K \times K N×GC0×K×K总参数量减少为原来的 1 G \frac{1}{G} G1

计算量公式:
[ ( 2 × K 2× C 0/ g + 1 ) ×H×W× C o /g] × g \left[\left(2 \times K^{2} \times C_{0} / g +1\right) \times H \times W \times C_{o} / g\right] \times g [(2×K2×C0/g+1)×H×W×Co/g]×g
分组卷积的参数量为:
K ∗ K ∗ C 0 g ∗ C 1 g ∗ g K * K * \frac{C_{0}}{g} * \frac{C_{1}}{g} * g KKgC0gC1g
举例:

输入的尺寸是227×227×3,卷积核大小是11×11,输出是6,输出维度是55×55,group为3

我们带入公式可以计算出

参数量:

1 1 2 × 3 3 × 6 3 × 3 11^2 \times \frac{3}{3} \times \frac{6}{3} \times 3 112×33×36×3=726

运算量:

[(2×1 1 2 ×3/3+1) × 55 × 55 × 6 / 3 ] × 3 \left[\left(2 \times 11^{2} \times3 / 3 +1\right) \times 55 \times 55 \times 6 / 3\right] \times 3 [(2×112×3/3+1)×55×55×6/3]×3=2205225

MinNet核心代码

mixnet_s参数列表:

mixnet_s = [(16,  16,  [3],[1],    [1],    1, 1, 'ReLU',  0.0),  (16,  24,  [3],[1, 1], [1, 1], 2, 6, 'ReLU',  0.0),  (24,  24,  [3],[1, 1], [1, 1], 1, 3, 'ReLU',  0.0),  (24,  40,  [3, 5, 7], [1],    [1],    2, 6, 'Swish', 0.5),  (40,  40,  [3, 5],    [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40,  40,  [3, 5],    [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40,  40,  [3, 5],    [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40,  80,  [3, 5, 7], [1],    [1, 1], 2, 6, 'Swish', 0.25),  (80,  80,  [3, 5],    [1],    [1, 1], 1, 6, 'Swish', 0.25),  (80,  80,  [3, 5],    [1],    [1, 1], 1, 6, 'Swish', 0.25),  (80,  120, [3, 5, 7], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9],     [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9],     [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 200, [3, 5, 7, 9, 11], [1],    [1],    2, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9],     [1],    [1, 1], 1, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9],     [1],    [1, 1], 1, 6, 'Swish', 0.5)]

列的含义

第一列:in_channels,输入的通道。

第二列:out_channels,输出的通道。

第三列:卷积核的大小。

第四列:信道扩张,应用在MixNetBlock的扩展阶段。

第五列:信道映射,应用在MixNetBlock的末尾,映射输出通道。

第六列:stride,特征图缩放的倍数。

第七列:信道扩张的倍数。

第八列:激活函数

第九列:SE注意力机制放大的倍率。0代表没有SE。

行代表每个MixNetBlock的配置,MixNetBlock的代码如下:

class MixNetBlock(nn.Module):    def __init__(     self,     in_channels,     out_channels,     kernel_size=[3],     expand_ksize=[1],     project_ksize=[1],     stride=1,     expand_ratio=1,     non_linear='ReLU',     se_ratio=0.0    ): super(MixNetBlock, self).__init__() expand = (expand_ratio != 1) expand_channels = in_channels * expand_ratio se = (se_ratio != 0.0) self.residual_connection = (stride == 1 and in_channels == out_channels) conv = [] if expand:     # 扩展阶段     pw_expansion = nn.Sequential(  GroupedConv2d(in_channels, expand_channels, expand_ksize),  nn.BatchNorm2d(expand_channels),  NON_LINEARITY[non_linear]     )     conv.append(pw_expansion) # depthwise convolution phase dw = nn.Sequential(     MDConv(expand_channels, kernel_size, stride),     nn.BatchNorm2d(expand_channels),     NON_LINEARITY[non_linear] ) conv.append(dw) if se:     # squeeze and excite     squeeze_excite = SqueezeAndExcite(expand_channels, in_channels, se_ratio)     conv.append(squeeze_excite) # projection phase pw_projection = nn.Sequential(     GroupedConv2d(expand_channels, out_channels, project_ksize),     nn.BatchNorm2d(out_channels) ) conv.append(pw_projection) self.conv = nn.Sequential(*conv)    def forward(self, x): if self.residual_connection:     return x + self.conv(x) else:     return self.conv(x)

我们将网络打印出来,选择“(80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, ‘Swish’, 0.5),”这组配置,结合MixNetBlock的代码来学习。

 (10): MixNetBlock(      (conv): Sequential( (0): Sequential(   (0): GroupedConv2d(     (grouped_conv): ModuleList((0): Conv2d(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): Conv2d(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)     )   )   (1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)   (2): Swish(     (sigmoid): Sigmoid()   ) ) (1): Sequential(   (0): MDConv(     (mixed_depthwise_conv): ModuleList((0): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=160, bias=False)(1): Conv2d(160, 160, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=160, bias=False)(2): Conv2d(160, 160, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=160, bias=False)     )   )   (1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)   (2): Swish(     (sigmoid): Sigmoid()   ) ) (2): SqueezeAndExcite(   (se_reduce): Conv2d(480, 40, kernel_size=(1, 1), stride=(1, 1))   (non_linear1): Swish(     (sigmoid): Sigmoid()   )   (se_expand): Conv2d(40, 480, kernel_size=(1, 1), stride=(1, 1))   (non_linear2): Sigmoid() ) (3): Sequential(   (0): GroupedConv2d(     (grouped_conv): ModuleList((0): Conv2d(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): Conv2d(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)     )   )   (1): BatchNorm2d(120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) )      )    )

pw_expansion:通道扩展,将80个通道拆为两个40的channel作为卷积的输出,输入的channel×expand_ratio作为扩张的输出,然后拼接位480channel的特征图。

将480的channel拆解位3个160的channel,分别输入到混合卷积中,混合卷积由3×3、5×5和7×7构成的分组卷积中,分组为160,计算完成后拼接成480channel的特征图。

将特征图数据SE注意力中,计算完成后得到480channel的特征图。

最后,将480channel的特征图拆为两个240的特征图,分别输入到1×1的卷积中,得到60channel的特征图,然后,做拼接,得到120channel的特征图。

完整代码:

import mathimport torchimport torch.nn as nnfrom torch.autograd import Variableclass Swish(nn.Module):    def __init__(self): super(Swish, self).__init__() self.sigmoid = nn.Sigmoid()    def forward(self, x): return x * self.sigmoid(x)NON_LINEARITY = {    'ReLU': nn.ReLU(inplace=True),    'Swish': Swish(),}def _RoundChannels(c, divisor=8, min_value=None):    if min_value is None: min_value = divisor    new_c = max(min_value, int(c + divisor / 2) // divisor * divisor)    if new_c < 0.9 * c: new_c += divisor    return new_cdef _SplitChannels(channels, num_groups):    split_channels = [channels // num_groups for _ in range(num_groups)]    split_channels[0] += channels - sum(split_channels)    return split_channelsdef Conv3x3Bn(in_channels, out_channels, stride, non_linear='ReLU'):    return nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, stride, 1, bias=False), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear]    )def Conv1x1Bn(in_channels, out_channels, non_linear='ReLU'):    return nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear]    )class SqueezeAndExcite(nn.Module):    def __init__(self, channels, squeeze_channels, se_ratio): super(SqueezeAndExcite, self).__init__() squeeze_channels = squeeze_channels * se_ratio if not squeeze_channels.is_integer():     raise ValueError('channels must be divisible by 1/ratio') squeeze_channels = int(squeeze_channels) self.se_reduce = nn.Conv2d(channels, squeeze_channels, 1, 1, 0, bias=True) self.non_linear1 = NON_LINEARITY['Swish'] self.se_expand = nn.Conv2d(squeeze_channels, channels, 1, 1, 0, bias=True) self.non_linear2 = nn.Sigmoid()    def forward(self, x): y = torch.mean(x, (2, 3), keepdim=True) y = self.non_linear1(self.se_reduce(y)) y = self.non_linear2(self.se_expand(y)) y = x * y return yclass GroupedConv2d(nn.Module):    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(GroupedConv2d, self).__init__() self.num_groups = len(kernel_size) self.split_in_channels = _SplitChannels(in_channels, self.num_groups) self.split_out_channels = _SplitChannels(out_channels, self.num_groups) print(self.split_in_channels) self.grouped_conv = nn.ModuleList() for i in range(self.num_groups):     self.grouped_conv.append(nn.Conv2d(  self.split_in_channels[i],  self.split_out_channels[i],  kernel_size[i],  stride=stride,  padding=padding,  bias=False     ))    def forward(self, x): if self.num_groups == 1:     return self.grouped_conv[0](x) x_split = torch.split(x, self.split_in_channels, dim=1) x = [conv(t) for conv, t in zip(self.grouped_conv, x_split)] x = torch.cat(x, dim=1) return xclass MDConv(nn.Module):    def __init__(self, channels, kernel_size, stride): super(MDConv, self).__init__() self.num_groups = len(kernel_size) self.split_channels = _SplitChannels(channels, self.num_groups) self.mixed_depthwise_conv = nn.ModuleList() for i in range(self.num_groups):     self.mixed_depthwise_conv.append(nn.Conv2d(  self.split_channels[i],  self.split_channels[i],  kernel_size[i],  stride=stride,  padding=kernel_size[i] // 2,  groups=self.split_channels[i],  bias=False     ))    def forward(self, x): if self.num_groups == 1:     return self.mixed_depthwise_conv[0](x) x_split = torch.split(x, self.split_channels, dim=1) x = [conv(t) for conv, t in zip(self.mixed_depthwise_conv, x_split)] x = torch.cat(x, dim=1) return xclass MixNetBlock(nn.Module):    def __init__(     self,     in_channels,     out_channels,     kernel_size=[3],     expand_ksize=[1],     project_ksize=[1],     stride=1,     expand_ratio=1,     non_linear='ReLU',     se_ratio=0.0    ): super(MixNetBlock, self).__init__() expand = (expand_ratio != 1) expand_channels = in_channels * expand_ratio se = (se_ratio != 0.0) self.residual_connection = (stride == 1 and in_channels == out_channels) conv = [] if expand:     # expansion phase     pw_expansion = nn.Sequential(  GroupedConv2d(in_channels, expand_channels, expand_ksize),  nn.BatchNorm2d(expand_channels),  NON_LINEARITY[non_linear]     )     conv.append(pw_expansion) # depthwise convolution phase dw = nn.Sequential(     MDConv(expand_channels, kernel_size, stride),     nn.BatchNorm2d(expand_channels),     NON_LINEARITY[non_linear] ) conv.append(dw) if se:     # squeeze and excite     squeeze_excite = SqueezeAndExcite(expand_channels, in_channels, se_ratio)     conv.append(squeeze_excite) # projection phase pw_projection = nn.Sequential(     GroupedConv2d(expand_channels, out_channels, project_ksize),     nn.BatchNorm2d(out_channels) ) conv.append(pw_projection) self.conv = nn.Sequential(*conv)    def forward(self, x): if self.residual_connection:     return x + self.conv(x) else:     return self.conv(x)class MixNet(nn.Module):    # [in_channels, out_channels, kernel_size, expand_ksize, project_ksize, stride, expand_ratio, non_linear, se_ratio]    mixnet_s = [(16, 16, [3], [1], [1], 1, 1, 'ReLU', 0.0),  (16, 24, [3], [1, 1], [1, 1], 2, 6, 'ReLU', 0.0),  (24, 24, [3], [1, 1], [1, 1], 1, 3, 'ReLU', 0.0),  (24, 40, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.5),  (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40, 80, [3, 5, 7], [1], [1, 1], 2, 6, 'Swish', 0.25),  (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25),  (80, 80, [3, 5], [1], [1, 1], 1, 6, 'Swish', 0.25),  (80, 120, [3, 5, 7], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 200, [3, 5, 7, 9, 11], [1], [1], 2, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)]    mixnet_m = [(24, 24, [3], [1], [1], 1, 1, 'ReLU', 0.0),  (24, 32, [3, 5, 7], [1, 1], [1, 1], 2, 6, 'ReLU', 0.0),  (32, 32, [3], [1, 1], [1, 1], 1, 3, 'ReLU', 0.0),  (32, 40, [3, 5, 7, 9], [1], [1], 2, 6, 'Swish', 0.5),  (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40, 40, [3, 5], [1, 1], [1, 1], 1, 6, 'Swish', 0.5),  (40, 80, [3, 5, 7], [1], [1], 2, 6, 'Swish', 0.25),  (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25),  (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25),  (80, 80, [3, 5, 7, 9], [1, 1], [1, 1], 1, 6, 'Swish', 0.25),  (80, 120, [3], [1], [1], 1, 6, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 120, [3, 5, 7, 9], [1, 1], [1, 1], 1, 3, 'Swish', 0.5),  (120, 200, [3, 5, 7, 9], [1], [1], 2, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5),  (200, 200, [3, 5, 7, 9], [1], [1, 1], 1, 6, 'Swish', 0.5)]    def __init__(self, net_type='mixnet_s', input_size=224, num_classes=1000, stem_channels=16, feature_size=1536,   depth_multiplier=1.0): super(MixNet, self).__init__() if net_type == 'mixnet_s':     config = self.mixnet_s     stem_channels = 16     dropout_rate = 0.2 elif net_type == 'mixnet_m':     config = self.mixnet_m     stem_channels = 24     dropout_rate = 0.25 elif net_type == 'mixnet_l':     config = self.mixnet_m     stem_channels = 24     depth_multiplier *= 1.3     dropout_rate = 0.25 else:     raise TypeError('Unsupported MixNet type') assert input_size % 32 == 0 # depth multiplier if depth_multiplier != 1.0:     stem_channels = _RoundChannels(stem_channels * depth_multiplier)     for i, conf in enumerate(config):  conf_ls = list(conf)  conf_ls[0] = _RoundChannels(conf_ls[0] * depth_multiplier)  conf_ls[1] = _RoundChannels(conf_ls[1] * depth_multiplier)  config[i] = tuple(conf_ls) # stem convolution self.stem_conv = Conv3x3Bn(3, stem_channels, 2) # building MixNet blocks layers = [] for in_channels, out_channels, kernel_size, expand_ksize, project_ksize, stride, expand_ratio, non_linear, se_ratio in config:     layers.append(MixNetBlock(  in_channels,  out_channels,  kernel_size=kernel_size,  expand_ksize=expand_ksize,  project_ksize=project_ksize,  stride=stride,  expand_ratio=expand_ratio,  non_linear=non_linear,  se_ratio=se_ratio     )) self.layers = nn.Sequential(*layers) # last several layers self.head_conv = Conv1x1Bn(config[-1][1], feature_size) self.avgpool = nn.AvgPool2d(input_size // 32, stride=1) self.dropout = nn.Dropout(dropout_rate) self.classifier = nn.Linear(feature_size, num_classes) self._initialize_weights()    def forward(self, x): x = self.stem_conv(x) x = self.layers(x) x = self.head_conv(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.classifier(x) return x    def _initialize_weights(self): for m in self.modules():     if isinstance(m, nn.Conv2d):  n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels  m.weight.data.normal_(0, math.sqrt(2.0 / n))  if m.bias is not None:      m.bias.data.zero_()     elif isinstance(m, nn.BatchNorm2d):  m.weight.data.fill_(1)  m.bias.data.zero_()     elif isinstance(m, nn.Linear):  n = m.weight.size(1)  m.weight.data.normal_(0, 0.01)  m.bias.data.zero_()if __name__ == '__main__':    net = MixNet()    x_image = Variable(torch.randn(1, 3, 224, 224))    y = net(x_image)