文章目录
-
- image_scale.hpp
- image_scale.cpp
- main
image_scale.hpp
#ifndef IMAGE_SCALE_HPP#define IMAGE_SCALE_HPP#include #include #include #include #include enum class ScaleMethod { Nearest, Bilinear, Bicubic, Pyramid };struct Image { std::vector<uint8_t> data; int width = 0; int height = 0; int channels = 0; float dpi = 0.0f; Image(int w, int h, int c, float d = 0.0f) : width(w), height(h), channels(c), dpi(d), data(w* h* c) { } uint8_t get_pixel(int x, int y, int c) const { x = std::clamp(x, 0, width - 1); y = std::clamp(y, 0, height - 1); return data[(y * width + x) * channels + c]; }};Image scale_image(const Image& src, std::pair<int, int> dst_size, float target_dpi , ScaleMethod method );Image read_jpeg(const std::string& path);std::vector<uint8_t> encode_jpeg(const Image& img, int quality );void save_jpeg(const std::string& path, const Image& img, int quality );#endif
image_scale.cpp
#include \"image_scale.hpp\"#include #include #include namespace { float bicubic_kernel(float x, float B = 0.0f, float C = 0.5f) { x = std::abs(x); if (x < 1.0f) { return ((12 - 9 * B - 6 * C) * x * x * x + (-18 + 12 * B + 6 * C) * x * x + (6 - 2 * B)) / 6.0f; } else if (x < 2.0f) { return ((-B - 6 * C) * x * x * x + (6 * B + 30 * C) * x * x + (-12 * B - 48 * C) * x + (8 * B + 24 * C)) / 6.0f; } return 0.0f; } Image downscale_half(const Image& src) { if (src.width <= 1 || src.height <= 1) throw std::invalid_argument(\"Image too small for downscaling\"); Image dst(src.width / 2, src.height / 2, src.channels, src.dpi / 2.0f); for (int y = 0; y < dst.height; ++y) { for (int x = 0; x < dst.width; ++x) { for (int c = 0; c < src.channels; ++c) { float p = ( src.get_pixel(x * 2, y * 2, c) + src.get_pixel(x * 2 + 1, y * 2, c) + src.get_pixel(x * 2, y * 2 + 1, c) + src.get_pixel(x * 2 + 1, y * 2 + 1, c) ) / 4.0f; dst.data[(y * dst.width + x) * src.channels + c] = static_cast<uint8_t>(p); } } } return dst; } std::pair<int, int> calculate_target_size(const Image& src, float target_dpi) { if (target_dpi <= 0 || src.dpi <= 0) return { src.width, src.height }; float scale = target_dpi / src.dpi; return { static_cast<int>(std::round(src.width * scale)), static_cast<int>(std::round(src.height * scale)) }; }}Image scale_image(const Image& src, std::pair<int, int> dst_size, float target_dpi, ScaleMethod method){ auto [dst_width, dst_height] = dst_size; if (target_dpi > 0) { auto dpi_size = calculate_target_size(src, target_dpi); dst_width = dpi_size.first; dst_height = dpi_size.second; } if (method == ScaleMethod::Pyramid && (dst_width < src.width || dst_height < src.height)) { Image current = src; while (current.width / 2 >= dst_width && current.height / 2 >= dst_height) { current = downscale_half(current); } if (current.width != dst_width || current.height != dst_height) { return scale_image(current, { dst_width, dst_height }, -1.0f, ScaleMethod::Bilinear); } return current; } Image dst(dst_width, dst_height, src.channels, (target_dpi > 0) ? target_dpi : src.dpi * (static_cast<float>(dst_width) / src.width)); const float x_ratio = static_cast<float>(src.width - 1) / dst_width; const float y_ratio = static_cast<float>(src.height - 1) / dst_height; for (int y = 0; y < dst_height; ++y) { for (int x = 0; x < dst_width; ++x) { const float src_x = x * x_ratio; const float src_y = y * y_ratio; for (int c = 0; c < src.channels; ++c) { float pixel = 0.0f; switch (method) { case ScaleMethod::Nearest: { int nx = static_cast<int>(src_x + 0.5f); int ny = static_cast<int>(src_y + 0.5f); pixel = src.get_pixel(nx, ny, c); break; } case ScaleMethod::Bilinear: { int x0 = static_cast<int>(src_x); int y0 = static_cast<int>(src_y); float dx = src_x - x0; float dy = src_y - y0; pixel = src.get_pixel(x0, y0, c) * (1 - dx) * (1 - dy) + src.get_pixel(x0 + 1, y0, c) * dx * (1 - dy) + src.get_pixel(x0, y0 + 1, c) * (1 - dx) * dy + src.get_pixel(x0 + 1, y0 + 1, c) * dx * dy; break; } case ScaleMethod::Bicubic: { int x0 = static_cast<int>(src_x) - 1; int y0 = static_cast<int>(src_y) - 1; float sum = 0.0f, weight_sum = 0.0f; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { float wx = bicubic_kernel(src_x - (x0 + i)); float wy = bicubic_kernel(src_y - (y0 + j)); float w = wx * wy; sum += src.get_pixel(x0 + i, y0 + j, c) * w; weight_sum += w; } } pixel = sum / (weight_sum + 1e-8f); break; } default: throw std::invalid_argument(\"Unsupported scale method\"); } dst.data[(y * dst.width + x) * src.channels + c] = static_cast<uint8_t>(std::clamp(pixel, 0.0f, 255.0f)); } } } return dst;}#include #include #include #include struct TJDeleter { void operator()(tjhandle h) const { if (h) tjDestroy(h); }};using TJHandle = std::unique_ptr<void, TJDeleter>;Image read_jpeg(const std::string& path) { std::ifstream file(path, std::ios::binary | std::ios::ate); if (!file) throw std::runtime_error(\"Cannot open file: \" + path); const size_t file_size = file.tellg(); file.seekg(0); std::vector<uint8_t> jpeg_data(file_size); if (!file.read(reinterpret_cast<char*>(jpeg_data.data()), file_size)) { throw std::runtime_error(\"Failed to read file: \" + path); } TJHandle jpeg(tjInitDecompress()); if (!jpeg) throw std::runtime_error(\"TurboJPEG init failed: \" + std::string(tjGetErrorStr())); int width, height, subsamp, colorspace; if (tjDecompressHeader3( jpeg.get(), jpeg_data.data(), jpeg_data.size(), &width, &height, &subsamp, &colorspace) != 0 ) { throw std::runtime_error(\"JPEG header error: \" + std::string(tjGetErrorStr())); } const int pixel_format = TJPF_RGB; const int pixel_size = tjPixelSize[pixel_format]; Image img(width, height, pixel_size); if (tjDecompress2( jpeg.get(), jpeg_data.data(), jpeg_data.size(), img.data.data(), width, 0, height, pixel_format, TJFLAG_FASTDCT | TJFLAG_NOREALLOC ) != 0 ) { throw std::runtime_error(\"JPEG decompress failed: \" + std::string(tjGetErrorStr())); } return img;}std::vector<uint8_t> encode_jpeg(const Image& img, int quality ) { if (img.data.empty() || img.width <= 0 || img.height <= 0) { throw std::runtime_error(\"Invalid image data\"); } if (quality < 1 || quality > 100) { throw std::runtime_error(\"Quality must be between 1-100\"); } TJHandle jpeg(tjInitCompress()); if (!jpeg) { throw std::runtime_error(\"TurboJPEG init failed: \" + std::string(tjGetErrorStr())); } int pixel_format; switch (img.channels) { case 1: pixel_format = TJPF_GRAY; break; case 3: pixel_format = TJPF_RGB; break; case 4: pixel_format = TJPF_RGBA; break; default: throw std::runtime_error(\"Unsupported image channels\"); } uint8_t* jpeg_buf = nullptr; unsigned long jpeg_size = 0; if (tjCompress2( jpeg.get(), img.data.data(), img.width, 0, img.height, pixel_format, &jpeg_buf, &jpeg_size, TJSAMP_444, quality, TJFLAG_ACCURATEDCT ) != 0) { throw std::runtime_error(\"JPEG compression failed: \" + std::string(tjGetErrorStr())); } std::vector<uint8_t> result(jpeg_buf, jpeg_buf + jpeg_size); tjFree(jpeg_buf); return result;}void save_jpeg(const std::string& path, const Image& img, int quality) { auto jpeg_data = encode_jpeg(img, quality); std::ofstream file(path, std::ios::binary); if (!file) throw std::runtime_error(\"Cannot open output file\"); file.write(reinterpret_cast<const char*>(jpeg_data.data()), jpeg_data.size());}
main
#include \"image_scale.hpp\"#include #include int main() {try {const std::string input_path = \"C:\\\\image\\\\jpeg_image.jpg\";Image original = read_jpeg(input_path);std::cout << \"Original image: \" << original.width << \"x\" << original.height<< \" (DPI: \" << original.dpi << \")\\n\";Image nearest = scale_image(original,{ original.width / 2, original.height / 2 },-1.0f, ScaleMethod::Nearest);Image bilinear_400x300 = scale_image(original,{ 400, 300 },-1.0f,ScaleMethod::Bilinear);float target_dpi = 150.0f;Image bicubic_150dpi = scale_image(original,{ 0, 0 }, target_dpi,ScaleMethod::Bicubic);std::cout << \"Bicubic scaled to DPI \" << target_dpi << \": \"<< bicubic_150dpi.width << \"x\" << bicubic_150dpi.height << \"\\n\";Image pyramid_quarter = scale_image(original,{ original.width / 4, original.height / 4 },-1.0f,ScaleMethod::Pyramid);save_jpeg(\"C:\\\\image\\\\nearest.jpg\", nearest, 95); save_jpeg(\"C:\\\\image\\\\bilinear.jpg\", bilinear_400x300, 95);save_jpeg(\"C:\\\\image\\\\bicubi.jpg\", bicubic_150dpi, 95); save_jpeg(\"C:\\\\image\\\\pyramid.jpg\", pyramid_quarter, 95); std::cout << \"All operations completed successfully!\\n\";}catch (const std::exception& e) {std::cerr << \"Fatal Error: \" << e.what() << \"\\n\";return 1;}return 0;}