> 技术文档 > STM32两轮平衡小车原理详解(开源)_stm32平衡小车

STM32两轮平衡小车原理详解(开源)_stm32平衡小车


一、引言

关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车,其原理并不言而喻了。源完整代码工程在文章末尾百度网盘链接,请需要的读者自行下载即可。

另外,由于平衡车的精髓在于PID算法的运用,有需要了解PID算法的读者可以参考以下两篇文章:

PID算法详解(代码详解篇),位置式PID、增量式PID(通用)_pid 代码-CSDN博客

PID算法详解(精华知识汇总)_小小_扫地僧的博客-CSDN博客

二、所需材料

1、STM32F03C8T6

2、MPU6050

3、蓝牙模块

4、编码电机

5、TB6612

6、电源+稳压模块

7、OLED显示模块

三、接线强调

1、TB6612接线

2、蓝牙模块与单片机之间

单片机                蓝牙模块

 TX      ——>     RX  

 RX      ——>     TX  

3、MPU6050 

使用IIC通信,所以对照代码接SDA、SCL、GND、VCC、IN(中断触发线)

四、功能介绍

1、两轮平衡直立

2、蓝牙APP控制运动状态

3、遥控手柄控制

4、超声波避障

五、关键算法

PID算法对编码电机的控制

1.位置闭环控制

        位置闭环控制就是根据编码器的脉冲累加测量电机的位置信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程 位置闭环控制就是根据编码器的脉冲累加测量电机的位置信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程.

1.1理论分析

1.2控制原理图 

1.3C语言实现 

int Position_PID (int Encoder, int Target){ static float Bias, Pwm,Integral_bias,Last_Bias; Bias=Encoder-Target;//计算偏差 Integral_bias+=Bias; //求出偏差的积分 Pwm=Position_KP*Bias+Position_KI*Integral_bias+Position_KD*(Bias-Last_Bias);Last_Bias=Bias; //保存上一次偏差 return Pwm; //输出} 

入口参数为编码器的位置测量值和位置控制的目标值,返回值为电机控制PWM(现在再看一下上面的控制原理图是不是更加容易明白了)。
第一行是相关内部变量的定义。
第二行是求出速度偏差,由测量值减去目标值。第三行通过累加求出偏差的积分。
第四行使用位置式PID控制器求出电机 PWM。第五行保存上一次偏差,便于下次调用。最后一行是返回。
然后,在定时中断服务函数里面调用该函数实现我们的控制目标:Moto=Position_PID(Encoder, Target_Position);
Set_Pwm(Moto) ;//===赋值给PWM寄存器

2、速度闭环控制

速度闭环控制就是根据单位时间获取的脉冲数(这里使用了M法测速)测量电机的速度信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程。
一些PID的要点在位置控制中已经有讲解,这里不再赘叙。
需要说明的是,这里速度控制20ms一次,一般建议10ms或者5ms,因为在这里电机是使用USB供电,速度比较慢,20ms可以延长获取速度的单位时间,提高编码器的采值。

 2.1理论分析

根据增量式离散PID公式 根据增量式离散PID公式
Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)]
e(k):本次偏差
e(k-1):上一次的偏差e (k-2):上上次的偏差
Pwm 代表增量输出

在我们的速度控制闭环系统里面只使用PI控制,因此对PID控制器可简化为以下公式:
Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)

2.2 控制原理图

2.3 C语言实现

增量式PI控制器具体通过C语言实现的代码如下:
 

int Incremental_PI (int Encoder,int Target){ static float Bias, Pwm, Last_bias; Bias=Encoder-Target;//计算偏差 Pwm+=Velocity_KP*(Bias-Last_bias)+Velocity_KI*Bias;//增量式PI控制器 Last_bias=Bias;//保存上一次偏差 return Pwm;//增量输出}

入口参数为编码器的速度测量值和速度控制的目标值,返回值为电机控制PWM。
第一行是相关内部变量的定义。
第二行是求出速度偏差,由测量值减去目标值。第三行使用增量PI控制器求出电机PWM。
第四行保存上一次偏差,便于下次调用。最后一行是返回。
然后,在定时中断服务函数里面调用该函数实现我们的控制目标:

Moto=Incremental_PI(Encoder, Target_Velocity);Set_Pwm(Moto);//===赋值给对应MCU的PWM寄存器

六、关键代码分析

1、编码电机PID算法控制

#include \"control.h\"#include \"usart2.h\"/**************************************************************************函数功能:所有的控制代码都在这里面 5ms定时中断由MPU6050的INT引脚触发 严格保证采样和数据处理的时间同步 在MPU6050的采样频率设置中,设置成100HZ,即可保证6050的数据是10ms更新一次。 读者可在imv_mpu.h文件第26行的宏定义进行修改(#define DEFAULT_MPU_HZ (100))**************************************************************************/#define SPEED_Y 100 //俯仰(前后)最大设定速度#define SPEED_Z 80//偏航(左右)最大设定速度 int Balance_Pwm,Velocity_Pwm,Turn_Pwm,Turn_Kp;float Mechanical_angle=8; float Target_Speed=0;//期望速度(俯仰)。用于控制小车前进后退及其速度。float Turn_Speed=0;//期望速度(偏航)//针对不同车型参数,在sys.h内设置define的电机类型float balance_UP_KP=BLC_KP; // 小车直立环PD参数float balance_UP_KD=BLC_KD;float velocity_KP=SPD_KP; // 小车速度环PI参数float velocity_KI=SPD_KI;float Turn_Kd=TURN_KD;//转向环KP、KDfloat Turn_KP=TURN_KP;void EXTI9_5_IRQHandler(void) {static u8 Voltage_Counter=0;if(PBin(5)==0){EXTI->PR=1<=101) CTRL_MODE=97;Mode_Change=1;}Get_RC();Target_Speed=Target_Speed>SPEED_Y?SPEED_Y:(Target_SpeedSPEED_Z?SPEED_Z:(Turn_Speed10000) Encoder_Integral=10000; //===积分限幅if(Encoder_Integral<-10000)Encoder_Integral=-10000; //===积分限幅Velocity=Encoder*velocity_KP+Encoder_Integral*velocity_KI; //===速度控制 if(pitch40) Encoder_Integral=0; //===电机关闭后清除积分 return Velocity;}/**************************************************************************函数功能:转向PD控制入口参数:电机编码器的值、Z轴角速度返回 值:转向控制PWM**************************************************************************/int Turn_UP(int gyro_Z, int RC){int PWM_out;/*转向约束*/if(RC==0)Turn_Kd=TURN_KD; //若无左右转向指令,则开启转向约束else Turn_Kd=0; //若左右转向指令接收到,则去掉转向约束PWM_out=Turn_Kd*gyro_Z + Turn_KP*RC;return PWM_out;}void Tracking(){TkSensor=0;TkSensor+=(C1<<3);TkSensor+=(C2<<2);TkSensor+=(C3<=20) //100ms读取一次超声波的数据{SR04_Counter=0;SR04_StartMeasure(); //读取超声波的值}if(SR04_Distance速度清零,稳在原地if(Fore==1)Target_Speed--;//前进1标志位拉高-->需要前进if(Back==1)Target_Speed++;///*左右*/if((Left==0)&&(Right==0))Turn_Speed=0;if(Left==1)Turn_Speed-=30;//左转if(Right==1)Turn_Speed+=30;//右转break;case 99://循迹模式Tracking();switch(TkSensor){case 15:Target_Speed=0;Turn_Speed=0;break;case 9:Target_Speed--;Turn_Speed=0;break;case 2://向右转Target_Speed--;Turn_Speed=15;break;case 4://向左转Target_Speed--;Turn_Speed=-15;break;case 8:Target_Speed=-10;Turn_Speed=-80;break;case 1:Target_Speed=-10;Turn_Speed=80;break;}break;case 100://PS2手柄遥控if(PS2_Plugin){LY=PS2_LY-128; //获取偏差RX=PS2_RX-128; //获取偏差if(LY>-Yuzhi&&LY-Yuzhi&&RX-LY/RATE_VEL) Target_Speed--;else if(Target_Speed<-LY/RATE_VEL) Target_Speed++;Turn_Speed=RX/RATE_TURN;}else{Target_Speed=0,Turn_Speed=0;}break;}}

 2、编码电机编码值采集

#include \"encoder.h\"/**************************************************************************函数功能:把TIM2初始化为编码器接口模式入口参数:无返回 值:无**************************************************************************/void Encoder_Init_TIM2(void){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_ICInitTypeDef TIM_ICInitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//使能定时器4的时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;//端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //根据设定参数初始化GPIOB TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;////TIM向上计数 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_EncoderInterfaceConfig(TIM2, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3 TIM_ICStructInit(&TIM_ICInitStructure); TIM_ICInitStructure.TIM_ICFilter = 10; TIM_ICInit(TIM2, &TIM_ICInitStructure); TIM_ClearFlag(TIM2, TIM_FLAG_Update);//清除TIM的更新标志位 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //Reset counter TIM_SetCounter(TIM2,0); TIM_Cmd(TIM2, ENABLE); }/**************************************************************************函数功能:把TIM3初始化为编码器接口模式入口参数:无返回 值:无**************************************************************************/void Encoder_Init_TIM3(void){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_ICInitTypeDef TIM_ICInitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);//使能定时器4的时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;//端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //根据设定参数初始化GPIOB TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;////TIM向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12,TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3 TIM_ICStructInit(&TIM_ICInitStructure); TIM_ICInitStructure.TIM_ICFilter = 10; TIM_ICInit(TIM3, &TIM_ICInitStructure); TIM_ClearFlag(TIM3, TIM_FLAG_Update);//清除TIM的更新标志位 TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE); //Reset counter TIM_SetCounter(TIM3,0); TIM_Cmd(TIM3, ENABLE); }/**************************************************************************函数功能:单位时间读取编码器计数入口参数:定时器返回 值:速度值**************************************************************************/int Read_Encoder(u8 TIMX){ int Encoder_TIM; switch(TIMX) { case 2: Encoder_TIM= (short)TIM2 -> CNT; TIM2 -> CNT=0; break; case 3: Encoder_TIM= (short)TIM3 -> CNT; TIM3 -> CNT=0; break; default: Encoder_TIM=0; }return Encoder_TIM;}

3、PWM配置

#include \"pwm.h\"//PWM输出初始化//arr:自动重装值//psc:时钟预分频数//TIM1_PWM_Init(7199,0);//PWM频率=72000/(7199+1)=10Khzvoid TIM1_PWM_Init(u16 arr,u16 psc){ GPIO_InitTypeDef GPIO_InitStructure;TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;TIM_OCInitTypeDef TIM_OCInitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);// RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE); //使能GPIO外设时钟使能 //设置该引脚为复用输出功能,输出TIM1 CH1 CH4的PWM脉冲波形GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_11; //TIM_CH1 //TIM_CH4GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 不分频TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能TIM_OCInitStructure.TIM_Pulse = 0; //设置待装入捕获比较寄存器的脉冲值TIM_OCInitStructure.TIM_Pulse = arr >> 1;TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高TIM_OC1Init(TIM1, &TIM_OCInitStructure); //根据TIM_OCInitStruct中指定的参数初始化外设TIMxTIM_OC4Init(TIM1, &TIM_OCInitStructure); //根据TIM_OCInitStruct中指定的参数初始化外设TIMx TIM_CtrlPWMOutputs(TIM1,ENABLE);//MOE 主输出使能TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable); //CH1预装载使能 TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable); //CH4预装载使能 TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器TIM_Cmd(TIM1, ENABLE); //使能TIM1}

4、蓝牙控制

#include \"usart2.h\"/**************************************************************************函数功能:串口2初始化入口参数: bound:波特率返回 值:无**************************************************************************/void uart2_init(u32 bound){ //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能UGPIOB时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);//使能USART2时钟//USART2_TX GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA2 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出 GPIO_Init(GPIOA, &GPIO_InitStructure); //USART2_RX GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA3 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //USART 初始化设置USART_InitStructure.USART_BaudRate = bound;//串口波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//收发模式 USART_Init(USART2, &USART_InitStructure); //初始化串口2 USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串口接受中断 USART_Cmd(USART2, ENABLE);  //使能串口2 }/**************************************************************************函数功能:串口2接收中断入口参数:无返回 值:无**************************************************************************/u8 Fore,Back,Left,Right;void USART2_IRQHandler(void){int Uart_Receive;if(USART_GetITStatus(USART2,USART_IT_RXNE)!=RESET)//接收中断标志位拉高{Uart_Receive=USART_ReceiveData(USART2);//保存接收的数据BluetoothCMD(Uart_Receive);}}void BluetoothCMD(int Uart_Receive){switch(Uart_Receive){case 90://停止Fore=0,Back=0,Left=0,Right=0;break;case 65://前进Fore=1,Back=0,Left=0,Right=0;break;case 72://左前Fore=1,Back=0,Left=1,Right=0;break;case 66://右前Fore=1,Back=0,Left=0,Right=1;break;case 71://左转Fore=0,Back=0,Left=1,Right=0;break;case 67://右转Fore=0,Back=0,Left=0,Right=1;break;case 69://后退Fore=0,Back=1,Left=0,Right=0;break;case 70://左后,向右旋Fore=0,Back=1,Left=0,Right=1;break;case 68://右后,向左旋Fore=0,Back=1,Left=1,Right=0;break;default://停止Fore=0,Back=0,Left=0,Right=0;break;}}void Uart2SendByte(char byte) //串口发送一个字节{USART_SendData(USART2, byte); //通过库函数 发送数据while( USART_GetFlagStatus(USART2,USART_FLAG_TC)!= SET); //等待发送完成。 检测 USART_FLAG_TC 是否置1; //见库函数 P359 介绍}void Uart2SendBuf(char *buf, u16 len){u16 i;for(i=0; i<len; i++)Uart2SendByte(*buf++);}void Uart2SendStr(char *str){u16 i,len;len = strlen(str);for(i=0; i<len; i++)Uart2SendByte(*str++);}

5、中断处理函数

void EXTI9_5_IRQHandler(void) {static u8 Voltage_Counter=0;if(PBin(5)==0){EXTI->PR=1<=101) CTRL_MODE=97;Mode_Change=1;}Get_RC();Target_Speed=Target_Speed>SPEED_Y?SPEED_Y:(Target_SpeedSPEED_Z?SPEED_Z:(Turn_Speed<-SPEED_Z?(-SPEED_Z):Turn_Speed);//限幅( (20*100) * 100)Balance_Pwm =balance_UP(pitch,Mechanical_angle,gyroy); //===直立环PID控制Velocity_Pwm=velocity(Encoder_Left,Encoder_Right,Target_Speed); //===速度环PID控制 Turn_Pwm =Turn_UP(gyroz,Turn_Speed); //===转向环PID控制Moto1=Balance_Pwm-Velocity_Pwm+Turn_Pwm; //===计算左轮电机最终PWMMoto2=Balance_Pwm-Velocity_Pwm-Turn_Pwm; //===计算右轮电机最终PWM Xianfu_Pwm(); //===PWM限幅Turn_Off(pitch,12); //===检查角度以及电压是否正常Set_Pwm(Moto1,Moto2); //===赋值给PWM寄存器 }}

七、PCB板设计

八、代码开源

完整代码工程大家可以到公众号中获取——回复:“stm32平衡车”